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Introduction

The SAM (“Spatial Analysis in Macroecology”) software was developed in the lab at Federal
University of Goids, Brasil, and aims to provide an integrated computational platform to perform
spatial analyses, focused on macroecological data. The software can be obtained freely from our

website www.ecoevol.ufg.br/sam, and a description of the main features of the software was

published in Global Ecology & Biogeography (Rangel et al. 2006, GEB 15: 321-327) and in
Ecography (Rangel et al. 2010, Ecography 33: 46-50). This short guide aims to help you to explore
the program.

SAM has four main groups of modules (File, Data, Structure and Modeling), each one with
several submodules and routines, plus a detailed online Help that can be found at

www.ecoevol.ufg.br/sam.wiki (which can be very useful!). The exercises described below are

mainly structured according to these modules and submodules. SAM is becoming gradually very
large, and we cannot explore it entirely in a single workshop, so we have selected some exercises
we considered to be more important and useful (you can explore the entire program by yourself
later).

The basic purpose of this tutorial is to guide the students through key exercises in SAM, so
that all the basic functions are explored under the supervision of the lecturers. All the exercises
here could be repeated using a dataset of your own, but for teaching purposes we will use a
standard dataset.

This tutorial assumes that you have successfully downloaded and installed the latest
version of SAM from the official website, and have a reasonable knowledge of classical statistical
methods (particularly regression). If you have problems or get error messages during any step in

the tutorial, please contact one of the instructors to get help.
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This includes several sub-modules for a wide variety of data operations, including simple statistics,

graphs and maps, transformations, defining connectivity between spatial units, GIS operations and

principal components analysis for data reduction.

Building a SAM database

SAM version 4.0 and later are able to build biogeographic databases, using GIS functionality. The

necessary data to build the geographic databases are:

Species geographic ranges: should be formatted in ESRI shapefiles, as polygons or
points. For the purpose of this exercise we will use NatureServe data. NatureServe
provides free data on the geographic distribution of all Mammals and Birds of the
Western Hemisphere, as well as all Amphibians worldwide. You can download

NatureServe data from http://www.natureserve.org/getData/index.jsp.

Climatic/environmental data: these data should be formatted in one of the raster grids
permissible in SAM: *.bil, *.bip, *.asc, *.xyz, *.txt. For the purposes of this exercise we
will use WorldClim data, which provides minimum, mean and maximum monthly
temperature and precipitation, altitude and composite bioclimatic variables at various
spatial resolutions. You can download WorldClim data from

http://www.worldclim.org/current

Building a grid

The first task for building your SAM database is to define your grid. A grid is a series of polygons

(known as grid cells) that cover your geographic domain of interest. In most cases, grid cells have

the same or similar area. In macroecology your domain of interest often has the size of a

continent.

In SAM, find the menu Data > Data Handling > GIS Grids > Create GIS Grid. If you have correctly

installed SAM in your computer, you should see a window like the one below:
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The purple square area in the world map is defined by the coordinate values on the upper right
corner of the window (Left: -20, Bottom: -20, Right: +20, Top: +20). The coordinate values are
measures in units of degrees of latitude and longitude. This box defines the boundaries of your
area of study. Feel free to move this box to South America (or any area within the Western
Hemisphere) by changing the values to: Left: -82, Bottom: -58, Right: -34, Top: +14. It is very
important that you always set the left value smaller than the right value, and the top value bigger
than the bottom value. Notice that by holding <Shift> or <Ctrl> and clicking and dragging the
mouse using the left button you can define a square area, and SAM will inform to you the exact

coordinates of the box that you have drawn.

For all maps in SAM, you can use your mouse wheel (or scroll zone on a laptop mouse pad) to
zoom in and out in your map, and you can drag the map using the left mouse button. This should

help you to define the limits of your area of interest.

The second step towards defining a grid is cell size. Unfortunately the current version of SAM
does not allow building real equal area cells, but only cells with equal latitude and longitude side
lengths. For this reason, a cell of the same side length located at 60 degrees of latitude will have

approximately half the area of a cell located at the Equator (0 degrees of latitude). We should not
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forget this during our analysis, but for the moment we will define the side length of our grid cells

as 2 units of degrees of latitude and longitude.

Leave the option “Cell Shape” as “Square” for the moment, but feel free to go back to this option
in a later and check what the other options do. As soon as you are ready with the settings, click

“Create Grid”. You should now see a window similar to this one:
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SAM has created a series of small, regular-sized squares on top of South America. From left to
right, bottom to top, these grid cells cover the area defined by the bounding box set by you. Feel
free to zoom in and out using the mouse wheel, and pan along the continent by clicking the left
mouse button and dragging the map. You should notice that not all cells overlap the geographic
domain of South America. In fact, some cells are exclusive in the Atlantic or Pacific oceans. We
want to get rid of those cells, as they contain no bird or terrestrial mammal species. But how do

we do that?

In order to automatically select cells that do not overlap your domain defined by the world
shapefile (you can also use your own shapefile, defined in “Contour ShapeFile” box), click the
button “Calculate” (leave the option “Low Precision” selected). Those cells that fall outside the

South American boundary now look yellow, which means that they are selected:
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If you click “Delete Selected”, those selected cells will be excluded:
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Now, hold the shift button to select the remaining cells with small land area, such as island and

coastal cells. | will also select three species that overlap Panama:

5";!" SAM v4.0 - Spatial Analysis in Macroecology - |EI|1|

File Data Structure Modeling Help

e HRER BAHEORY | =2 EEciMPuIi¥T |0

M Create GIS Grid 10| x|
Frocess o n
Create | A i ﬁ

o’\

Contour ShapeFile:

IEountries d A

Mumber of Generated Cells: 423 I

Mumnber of 5 elected Cells: 9 s P

ol 6
e

]

—hrea Overlap: Y
= High Precision [slower] »
o Calculate | 1=
% Low Precision [faster)

—Cell Selection:

LAH4
/
[Tt—t=

Percent of Area Overlap:

2 = ! ]

Delete Selected |

=]
[l
i

Save Grid I Cloze | - ——

Mo data files have been loaded | Mo Coordinates | Mo Yariables | Mo Cases |

When you click the button “Save Grid” a file save dialog pops up. Define the location and name of
the shapefile that describes your grid, and save it for later analysis. After saving the file, the “Data
Settings” window will pop up, showing the variables available in the shapefile. Notice “Longitude
(X Centroid)” and “Latitude (Y Centroid)” selected as “Preset Geographic Coordinate Variables”
and “Geodesic” as the default “Geographic Coordinate System”.
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Rescaling environmental data

Once your grid system is defined, the next step to build a SAM database is to get environmental
data in the same scale and position as your grid is defined. In other words, the goal is to get an
environmental descriptor of each map cell. However, most of the environmental data available on
the internet is at a much finer spatial resolution. So we will have to get an averaged value for each
environmental variable within our 2 x 2 degrees grid cells. Of course, a descriptor of
environmental variation within the cell will also be welcome. The environmental data should be in
any of the raster grids allowed in SAM, such as the standard *.bil and *.bip file formats. Those

formats are available for download in the online WorldClim database (worldclim.org/download). |

have downloaded the “generic grids” in “10 arc-minutes resolution”, which is enough for the
resolution of our macroecological grid. If you have not done so already, download the “Bioclim”

one at this resolution and unzip the file.

The SAM module designed to process raster grids is located at Data > Data Handing > GIS Grids >

ReScale Raster Grid.

On the ReScale Raster Grid window you will define what your grid is. As you recall, your grid is
composed of polygons that define an area within your domain of study. One could use simple
latitude and longitude coordinates of the centroid of each of those areas, but that would only
work if your grid system is regular. However, because we have created a grid and saved it as a
shapefile, we have not only the coordinates of each cell centroid, but the coordinates of the entire
polygon (actually, the four vertices of each polygon). Thus, in our ReScale Raster Grid module,

select “Use Shapefile” and then select the shapefile that you have created for your grid.

The next step is to select your environmental file. As mentioned before, WorldClim provides data

in the standard *.bil raster format. Click on the upper-right corner button #il and navigate to the

bioclim files you downloaded from the WorldClim website. You can select all using <Shift>, in the

normal way, and open them all together. Here is what each variable means:

B1O1 = Annual Mean Temperature

B10O2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 = Isothermality (P2/P7) (* 100)

BI04 = Temperature Seasonality (standard deviation *100)



B105 = Max Temperature of Warmest Month
B106 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (P5-P6)
B108 = Mean Temperature of Wettest Quarter
BIO9 = Mean Temperature of Driest Quarter
B1010 = Mean Temperature of Warmest Quarter
BIO11 = Mean Temperature of Coldest Quarter
B10O12 = Annual Precipitation

B1013 = Precipitation of Wettest Month

B1014 = Precipitation of Driest Month

BIO15 = Precipitation Seasonality (Coefficient of Variation)
B1016 = Precipitation of Wettest Quarter

B1017 = Precipitation of Driest Quarter

B1018 = Precipitation of Warmest Quarter
B1019 = Precipitation of Coldest Quarter
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Because SAM knows exactly what the boundaries of each grid cell are, it is able to select all raster
points that fall within each grid cell. After finding those raster points in the original bioclimatic
variables, SAM will get descriptive statistics from the selected points, based on your choice on the

lower-right corner (“Sampling Statistics”). Click “Compute” and wait a few seconds to get this:
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One hundred and fifty two new variables have been created! Thus, for each cell in our grid, we
have eight new descriptors. Those represent, in the same order as displayed above, (1) number of
raster points found within each grid cell, (2) the minimum value, (3) the mean value, (4) the
median (‘mid’) value, (5) the maximum value, (6) the range in values, (7) the standard deviation
and (8) coefficient of variation. Feel free to uncheck each variable, and rename those that you

think are interesting. Click “Ok” and close the ReScale Raster Grid window.

Go to Data > Graphs and Maps > Map Data Matrix. The first two boxes on the upper-left define
the coordinate variables of each grid cell. The lower box, on the lower-left, defines the attribute
of the cells to be mapped. Select “Mean_biol” (which is mean annual temperature). This map
should look like this:

Mean_biol

270

70]
60]
50-]
407
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Notice that the scale is not in units of degrees Celcius, but degrees Celcius multiplied by 10. Take
some time to explore the other variables, rename (module Data > Data Settings) them, and discard

those that you think are not interesting.

After doing all this work with environmental variables, let us save all the data to the hard drive!

Go to “File > Save As” and in File Format select “ASCII (.SAM)”. Choose the same folder in your
hard drive where you have saved the shapefile, and name your *.SAM file using the same you gave
to the *.SHP file. SAM is programmed to ignore the *.DBF file associated with the *.SHP file if it
finds a *.SAM file of the same name in the same folder. Therefore, the *.SAM file will now

become the main database associated with your grid shapefile.
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Clipping and “rasterizing” species distributions to your grid

The next step is to get your response variable, or the variable that you will be investigating. Of
course, the choice of this variable depends on your scientific question, scale of analysis and

expertise. We can use the NatureServe (www.natureserve.org/getData/birdMaps.jsp) database

on the geographic distribution of birds in the Western Hemisphere in order to calculate the spatial
pattern in species richness of all birds in South America. It is easiest to downloaded the entire

database and unzip all the files into a single folder.

In the module “Data > Data Handling > GIS Grids > Get Species Occurrence from Shapefile”, select

the shapefile of our newly created grid under “Grid Definition”. Also, under “Species’” Name”
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select “Get Species’ Name from Shapefile” and leave “SCI_NAME” as the “Shapefile DBF Field of

Species Name”.
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SAM will start working on the 4145 files as soon as you click “Compute”. On each of our laptops it
took around 10 minutes to process all the files. During the time of processing you can look at the
geographic distribution of any species already done, and available in the list. When you click on a
species, SAM will show the geographic distribution of that species. Here, for example, is the map

for “Anas cyanoptera”:



M GAM v4.0 - Spatial Analysis in Macroecology

File Data Structure Modelng Help

EREER BRHESQAR (=0 EEFWPuwAYY |9

et Species Presence/Absence Matrix from Shapefiles (bus

Seftings  Species’ Rangs |

162574145 files firished | N NREN [ Binay Presence/Absence:

Aix eponza
Amazonetta brasiliensiz
Anas acuta

Ahas americana

Ahas bahamensis
Anas clypeata

Nas dIsCors

SAM Grid.shp

Anas fulvigula
Anas flavirostriz
Anas penelope
Anaz georgica
Anaz platyrhpnchos
Anas puna

Anas querquedula
anas platalea
Anaz rubripes

Cell Dccupancy Cut-off:
0.50

Save to Pres/abs bMatris

Save Dcocupancy to File
Close |

=lolx

| Conrdinates: Geodesic | wariables: 157 | Cases: 425

| saved

13

Once SAM finishes processing all files, you should get a window named “Save Species’ Ranges”.

This shows the names of all species that have been found in all shapefiles selected for processing.
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After clicking “Ok” we see that 4145 species have been saved as a Presence/Absence matrix. This

means that the data are not directly available for mapping in the “Main Data Matrix”, but are

saved in a separated part of the memory. If you look in “File > Data Settings”, under the “Species’

Presence/Absence Matrix”, you should find all species that were processed from the shapefiles.
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Notice that you can also save the species’ Presence/Absence Matrix to a ASCII file, by clicking in
the “Save Occupancy to File” button. You will be prompted a list of species and then a file save
dialog, in which you should choose the name and path of a text file that will hold the binary matrix

with zeros for absence and ones for presence.

But how can one calculate species richness from these data? In the module Data > Data Handling >
Species Occurrence > Calculate Species Richness you can sum across all columns of the

Presence/Absence Matrix that is stored in SAM’s memory:
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Select all or some of the species available in the upper-left corner, where all species available are
listed. Once you select the species, click the left “Add” button and a new temporary variable
appears in the upper-mid box, named. This temporary variable already holds the species richness
of those species selected before. However, sometimes you want to subtract or add species
richness from a second pool of selected species, to get the richness of a sub-group, and to do so
you can use the “Plus” and “Minus” buttons. When you are ready, select the variable in the middle
box and click the right “Add” button. The variable should now be listed with the other variables

already available.
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As you may already have guessed, the newly created variable (bird species richness) can now be
mapped. Go to “Data > Graphs and Maps > Map Data Matrix” and select the new variable at the
bottom of the lower-left box. You should get your species richness map. Of course, feel free to

explore all graphing options available in SAM.
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Dealing with files and file formats

Now that you have produced your own database, maybe we should consider data
formatting. SAM input files can be formatted as ASCII (American Standard Code for Information
Interchange), DBF (Database File), EXCEL or ESRI shapefile. As in most statistical software,
variables are arranged in columns, and cases (spatial units) in rows. The first row contains the
name of each variable in the file. An important issue regarding input data is that, because SAM
was developed for spatial analyses, your data file must contain two geographic coordinate
variables in order to compute spatial statistics. If these two coordinates are named “Latitude” and
“Longitude”, then SAM will understand that these variables are expressed as degrees (and decimal
degrees) of latitude and longitude (for example, 10.5 indicates 10°30’). A positive latitudinal value
means a site located north of the Equator, and a negative south; positive and negative values for
longitude mean, respectively, east and west of the Greenwich meridian. In SAM, when coordinate
variables are named “Latitude” and “Longitude”, all distances calculated within SAM will be
geodesic distances, which take into account the Earth’s surface curvature. It is highly
recommended to use this option whenever possible, especially in studies at large spatial scales. If
you are using a planar system (i.e. Euclidean, arbitrary scale), you can use other names (e.g., “X
Axis” and “Y Axis”, or “Vert Axis” and “Horiz Axis”) to express arbitrary spatial coordinates and, in
this case, SAM will compute geographic distances using a planar Euclidean system (the distance
between two sites is the length of a straight line that links them). Of course, you can easily change
this setting, at any timein SAM (Menu File > Data Settings); whatever you define will be used as
default in all SAM routines thereafter.

Today, most macroecologists use ESRI shapefiles to define grids and store biogeographic
and environmental data, which is exactly what we did when we build our database. As mentioned
before, ESRI shapefiles are composed of at least three files: *.shp, *.shx and *.dbf. The first two
are designed to store the geographic information of the vertices of polygons or points, whereas
the latter stores the data matrix associated with the geographic objects. In SAM, only the numeric
information contained in the DBF matrix is used. Actually, DBF matrices are quite old and outdated
today, and impose several constraints on how the numbers are formatted. For this reason,
whenever there is a xxx.shp file along with a xxx.sam file (xxx is any name of file), SAM will actually
use the xxx.sam file as input to the numeric database, ignoring the *.DBF file. This provides

flexibility to the size of the database that can be used, as well as name of variables.
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Computational capacity: some of the SAM routines are computationally complex, and will

be time consuming when used for large datasets (especially when n > 2000 spatial units),
depending of course on your computer (the main limitation is actually the available RAM memory,
and computer time will depend on processing speed [GHz]). In our experience we can deal with
matrices with more than 5000 spatial units using good computers (RAM > 3 Gb), although some
analyses, such as autoregressive models and eigenvector spatial filtering, can last longer than 4
hours in some cases! Thus, for classroom exercises, we recommend data with no more than 500

spatial units, to allow an effective and feasible exploration of SAM modules and routines.

Getting familiar with files in SAM

By using a text editor (such as Notepad or Microsoft Word) open the dataset file in SAM format
that you created in the exercise above. | have named my file as “SAM Grid.SAM”. Now, using
Microsoft Excel, open that same file. You should see that a SAM file is nothing more than a text
(ASClI) file that have columns separated by tabs, while rows are in different lines. Also, in Excel
you should see that the entire dataset is in the upper left corner of the spreadsheet. No cells
within the data frame can contain missing values, and all cells except the column headings must
only contain numeric data. The only difference between a *.SAM file and a *.TXT file is that the

former can be double clicked and opened in SAM.

JRI=TEY
File Edk Format View Help
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You should always remember that SAM is distributed with Sample Datasets, which can be used as
a model for formatting your own datasets. Please refer to those sample datasets if you need to

check rules for file formatting.

Now that you know how files should be formatted for SAM it is time to see how to open them.
There are several ways you can open a dataset in SAM. You can use the menu File > Open > Open
a New Main Data File (or simply double-click the dark-grey area in SAM). Go ahead and open the
file “SAM Grid.SAM” in SAM and notice how the information appears in the bar at the bottom of

the screen (filename, type of spatial coordinates, number of variables and cases).

Lock ine | £ SAMMyDaata | «®mcrE-

= 54M Grid, dbf
SAM Grid, sam
|#]54M Grid. shp

My Computer

.
a

My File: name: ISAM Grid.zamm j Open I

Files of type: IAII Supported File Formats [*.zam; *txt; *.dbf; ".:-j Canicel

d
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The first thing you get when you open a dataset (successfully) is the “Data Setting” window, which

is useful to confirm the variables available for analysis in SAM.

Data Settings

Available ¥ ariables:

Shapefiles

Species' Presencesdbzence Matrix

Longitude % Centroid)
Latitude [ Centroid)
1D

LONG

LaT

n_big1

Min_bia1
Mean_biol
tid_bia1

M ax_hiol
Range_hiol
StdDew_hial
Coefvar_biol
r_bia2

tin_bia2
tean_bia2
Mid_bic2

Man_bin2
Rahge_kic2

Ldl CedMe, el

EditVariable's Marne:

i

I Species' Attributes batrix

Connectivity Matrix I Distancew'eight b atrix

—Iv Freset Geographic Coordinate Yariables
Longitudinal Geographic Coordinate [+ Axig):
ILongitude [ Centraid) j
Latitudinal Geographic Coordinate [ Axig]:
|Latitude [¥ Centraid) =]

—Geographic Coordinate System:

-

{~ Planar/Euclidian [arbitrary urits)
+ Geodssic [decimal degrees of Lat/Long)

Dpen | | Save As |

Show Data | LClaze I

Jain

This is a very important window, with which you should become familiar. In the left-hand side you

have the list of variables available for analysis, and each can be un-ticked if you do not want it in

your data. In the top of the right-hand side you can choose the geographic coordinate variables,

and preset them for all the analysis in SAM. By default, SAM will search for variables named

“Latitude” and “Longitude”, or variables starting with “X” and “Y”. In our case, SAM identified the

variables “Longitude (X Centroid)” and “Latitude (Y Centroid)”, and guessed that these are in a

“Geodesic” coordinate system.

¥ 5 aM v4.0 - Spatial Analysis in Macroecology

File Data Structure Modeling Help

ZECEBD BHE@RS: [L® EFs%UPwiTT o

SAM Grid.sam

=lolx|

|Coordinates: Geodesic ‘ Variables: 157 Cases: 425 | Saved
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In the status bar at the bottom of the screen, you can check the filename, the geographic
coordinate system in use (geodesic, in this case), the number of variables and cases. SAM also
shows that the data currently uploaded are the same as those found in the file (it says “saved” in

the lower-right corner), and as soon as you add or change the data it will change to “unsaved”.

Files can be saved at anytime, either overwriting the current file, or saved as a new file, with a new
file name. The “File > Save As” window allows selecting the file name and path, file format, as well

as the variables that are to be stored in the new file.

Managing and exploring data

Menu: Data > Data Handling

There are many different modules available under the menu Data > Data Handling. In general,
those modules concern transforming, producing and modifying new variables. Below is a brief

explanation of what most of them do. Of course, feel free to explore them in more detail.

a) Show Data Matrix: Shows the current Data Matrix in a spreadsheet. You can check and
change data, but you should probably use Excel if you are planning a systematic change of
your data matrix.

b) Transformations: Simple mathematical transformations that can be very handy when you
need to fit a particular distribution. On the left side of the window, select among one of
the available mathematical functions. On the right side, select which variable(s) you would
like to transform. In the lower-right corner, select whether you want to transform the
variable itself, overwriting it, or create a new variable, leaving the original intact.

c) Polynomial Expansions: This module can be very useful if you want to create polynomial
expansions of one or more variables, particularly for geographic coordinate variables.
These polynomial expansions can be used in Trend Surface Analysis, for example. To
expand variable(s), select one or more variables, select the polynomial order (2 or greater),
and click “Generate”. The generated variables will appear in the right box. Among the

“Temporary Variables”, select those that you wish to use, and click “Save”.
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d) Distance / Similarity Matrices: In this module you can calculate distance or similarity
between pairs of sampling sites, using one of the dozens of available distance and similarity
metrics (e.g. Euclidean, Geodesic, Nei distance indices, or Jaccard’s, Sorensen’s, Faith’s,
Simpson’s similarity indices). This module is particularly important for generating
distance/similarity matrices to be used in Mantel Tests. Select the variables that describe
your sampling units, choose among “distance metrics” and “similarity coefficients”, choose
the particular function you want to use in the option box, and click “Calculate”. You have
the option of renaming the distance/similarity matrix just created by selecting it and
changing its name in the “Matrix Name” box.

e) Geographic Connectivity/Distance Matrix: This module is used to Create, Edit and Plot
Connectivity and Distance Matrices (studied in more detail below).

f) Species Occurrence: The sub-module “Calculate Species Richness” can be used when a
“Species Presence/Absence Matrix” is loaded into SAM (File > Data Settings; see above),
which consists in a binary matrix in which species are columns and sampling units are rows.
Using these datasets you can calculate species richness patterns by selecting species
individually, based on some attribute of the species, or selecting all species. The sub-
module “Map Species’ Attributes” can be used to plot on the map the mean or variance of
a particular attribute, such as body size, of all species that are present in a given area (a
species’ assemblage or community). For this module you need to load not only the
“Species Presence/Absence Matrix”, but also the “Species Attributes Matrix” (see File >
Data Settings).

g) GIS Grids: Can be used to create a GIS grid and to resample environmental data into this

new grid, as well as to get species occurrence from shapefiles (see above for more).

Basic Descriptive Statistics

A simple but useful module is Data > Descriptive Statistics. In this module you can find descriptive

analytical statistics and a configurable histogram:
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“i Basic Statistics

Variables: [Mean_biol

Descriptive Statistics | Histogram

—Desglplwe Slgl\stu: e 425

'7 A Minimum: 39.16
Iv [¥ Std. Error Mean Maximum:  276.174
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[ Maximum [ Std. Deviation lst fQuartile:  170.424
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¥ Sum [V Wariance
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3.E. of Skewnmess: 0.118
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]

SAM Grid sam Coordinates: Geodesic | Variables: 157 Cases: 425 | Saved
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M Basic Statistics

Variables: [Mear_biol | Mumber of Bars: [30 :ll

Descriptive Statistics  Histogram

Freguency

3916 54951 70.762 85563 118.165 149.767 181.368 21297 244572
Mean_biol

SAM Grid.sam | Coordinates: Gendesic | Variables: 157 Cases: 425 | Saved

The example above shows the descriptive statistics (average, min, max, standard deviation,
variance) for Mean Annual Temperature in South America, as well as the distribution of values

across map cells.

Designing a connectivity matrix

More importantly, in the menu Data > Data Handling > Connectivity/Distance Matrix >
Create/Edit Connectivity Matrix, you can explore different possibilities for creating and editing
connections between cells, using different criteria. Click on the “Connectivity Criterions” tab, and

select “Gabriel Criterion” (this is one of the faster to calculate, but it will still take a while).



your connection scheme.

] : i
¥ SAM v4.0 - Spatial Analysis in Macroecology
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‘ Saved

Make sure you click “Create” button to save the connectivity criterion for later analysis.
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distance to 0 and 340). Save the “Queen” connectivity criterion so that it can also be used later.
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The Gabriel connectivity is displayed, as well as statistics for the connection. Use the button
“Create” and these connections will be available to be used by other modules of SAM. Remember
that the text present in the “Name of the Connectivity Matrix” text box will become the name of
Use this module and click in the ‘Distance Criterion’, and set the
distance limits to 0 and 250 (the units are km), and see the connection scheme changing in the
graph on the right. A connectivity criterion, as here, that connects adjacent cells in the vertical
and horizontal direction is known as “Rook” (as in the chess game), while connections of adjacent

cells in the horizontal, vertical and diagonal are known as “Queen” (in this case change the
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Another handy tool is to use the mouse to zoom in the map to take a look in details of the
connectivity structure. You can activate zoom in the figure by using the mouse wheel or the scroll
up/down portion of the mouse pad on most laptop computers: scrolling up (with the cursor over
the map) will zoom in; scrolling down will zoom out. You can drag the map by clicking and holding

the left mouse button. Also try right-clicking on the map.

Finally, you should know that you can enter your connectivity matrix by typing the connections
manually, or change an existing connectivity scheme by manually changing which cells that are
connected. This can be done in the “Edit Connectivity Matrix” tab, and can be useful when you
have a specific hypothesis for the geographical relationship among your sampling sites (the Matrix
W). Explore it as you wish. You can start by either typing numbers in the columns (a lengthy
process!) or by changing the numbers of an already existing connectivity matrix (“Choose a

Connectivity Matrix” box). Make sure you click “Save” when you are done.
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Exploring graphical features in SAM

Among the most-used modules in SAM are those located at “Data > Graphs and Maps”, where you
can build maps (“Map Data Matrix”), 2D and 3D scatterplots, create bar plots (where individual
values of each variable are linked visually) and residuals plots (map and scatterplot of residuals

from a simple bivariate regression).

In “2D Scatterplot” you have to select your X and Y variables from the list of variables available, in
the two boxes that list the variables in the left of the window. You can also select multiple Xs or
multiple Ys by holding the CTRL button of your keyboard. In the Options tab (which only appears
when one X and one Y variable are selected) you can easily fit linear and polynomial regressions
directly in 2-D graphs. You can also check the value of each observation (may be an outlier, or a
leverage) using the “Highlight Nearest Dot” option. You should explore all the features available

under the “Options” tab.

As you should learn for every graph in SAM, the right-button of the mouse hides many options to
customize and export your graph. Also, graphics in SAM can be double-clicked to open them in
their own window (graphics opened in this way stay exactly as they are thereafter, whether or not
you change data or settings). It is worth spending some time exploring the right-click menus
because the graphs in SAM can be customized to publication quality. In the example shown, | used

the “Edit Graph Labels” menu to change the size of the axis titles, as well as their respective labels.
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A map of the sort shown below is, of course, just a 2D scatterplot with a third variable represented
by colors. In SAM v4.0 the maps are now highly customizable and allow publication-quality figures.

Here is the “raw” map drawn by default by SAM for Mean Annual Temperature:
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As you will find out, moving the mouse over the map shows the case number, coordinates and
value of the variable in the cell hovered over. The most-used options in the right-click menu are:
a) Edit color classes, where you can change the color palette used for your variable and the
boundaries of each color (drag the colour bands on the histogram), b) Add map boundaries, c)
Show or hide the color legend, d) Edit map labels, where you can change the text (font type, font
size) associated with your map, e) Edit map legend, where you can change the text (font type, font
size) of the legend of your map, f) Copy and Export figure, which allow you to use the figure in

another program.

As an example of a customized map, the map below shows the pattern of species richness of all

bird species, as calculated in the first steps of this tutorial:

1,050
1,000

Number of Species
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Principal Components Analysis

The main purpose of including PCA in SAM is to reduce co-linearity among explanatory variables
(e.g. in a linear regression model). The module is quick and easy to use and is good for visualizing
the output, especially mapping and examining the spatial structure of the resulting components.
On the other hand, there are few options to select from (e.g. no option for axis rotation); if you

want this extra functionality, or to perform factor analysis, you will need different software.

Data > Data Reduction (PCA). Select the variables to be reduced to a small number of orthogonal
explanatory variables. (Note: the data used in the screen shots below are a different South
American dataset: PET = potential evapotranspiration; AET = actual evapotranspiration; Relev =

range in elevation within the cell.)

¥ 5 aM v2.0 - Spatial Analysis in Macroecology 10| =|
File Data Structure Modeling Help
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= Broken Stick Selection

Compute I Cloze

SAM Ex South America.sam Coordinakes: Planar ‘ariables: 17 Cases: 374 Saved

By clicking "Compute’, you get the first window of results:
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Notice the “Save” button at the lower-right hand corner of the window. By clicking this you

can save the PCA scores, and it will add them to your data for further analysis. This “Save” option

is common to most of SAM modules, so you can save any output that is structured in the spatial

units (i.e. the cases), such as spatial filters, model residuals, etc. It is important to remember that

when you click “Save” you only temporarily store the new variables in the RAM memory of your

computer; in order to permanently save the data in a file you should use the menu File > Save. You

can also save all other data displayed in SAM modules by coping (CTRL+C) and pasting (CTRL+V) in

the software of your preference (e.g. Notepad, MS Word or Excel).

It is important to be able to find the following results:

A) the scree plot and broken-stick criterion, the loadings, the biplot and the variable vs

component scatterplots, all of which aid the selection and interpretation of the

components;

B) the maps and correlograms of the PCA scores.

In the “Analytical Results” tab, you will see the loadings (the contribution of each variable

to each component), as well as the eigenvalues (left lower window). Notice that you can use the

broken-stick criterion to select which axes are “important” or “significant”, by comparing the

proportion of the variance accounted for (the second column) with the one expected by the



30
broken stick (last column). If the proportion of variation accounted for is less than that expected
by broken stick , as in the example shown here, the axis would not be used, according to this
criterion. Another commonly used criterion is the Kaiser criterion: selecting all axes with
eigenvalues larger than 1 (absolute values, not relative).

Inspecting the loadings, you can see that all variables except Relev are highly positively
correlated with the first component (for example, the loading of AET is 0.942). Relev has a
moderate negative correlation with the first axis, but a strong positive one with the second. Notice
that although only the first axis should be used according to the broken stick and Kaiser criteria,
the PCA shows that Relev is distinctly different to the other environmental variables. Thus a third,
very important criterion to select important axes is common sense! Axis 1 may be interpreted as
“climate” and axis 2 as “topography”.

In the analysis you have done, save the axes you have

decided to retain.
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You can visualize these results using the “Graphical Results” tab, in which the Correlation
Biplot plots the component loadings. The yellow circle is known as “equilibrium circle”, an
approximate rule of thumb in which any variable inside the circle would not be “significant” (none

in the case shown). In the Scree Plot you can see the broken-stick selection: where the broken
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stick is below the eigenvalue. Finally, the relationship between each original variable (e.g. “Rain”)
and the scores derived from each axis can be examined (click on the arrows to change the
variable). Finally, you can also map of each new variable and see its spatial structure in a
correlogram: click on the two arrows in the lower left-hand corner of the window to change the
component. For more detailed spatial analysis, you can run other SAM modules on the saved

components (see later exercises).

# 5 aM v2.0 - Spatial Analysis in Macroecology 10| =l
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EXERCISES

From now on we have a series of exercises in statistical analysis and manipulation of data, with the

main focus on spatial analysis — which SAM is particularly designed to facilitate. The techniques

covered are all in the ‘Structure’ and ‘Modeling’ menus:

‘Structure’ menu: this includes several sub-modules for exploring spatial patterns in data,
including spatial correlograms, trend surfaces, filtering, clustering and boundary delineation.

‘Modeling’ menu: this includes sub-modules for a wide range of spatial analyses, from simple

spatial correlation to some of the latest and most complex spatial regression techniques.

The names of the exercises reflect the menu in which the relevant sub-modules are found (St for

‘Structure’ and Mo for ‘Modeling’).

Exercise St1: Spatial autocorrelation

Here we start analyzing the spatial structure of variables in the dataset.

Press Ctrl-i or click E to bring up the Spatial Structure Analyses dialog (also Structure >
Moran’s | and Correlogram). This is one of the core modules in SAM. Create spatial correlograms
for different variables in the dataset. Try changing the number and type of distance classes.
Interpret the output under the ‘Moran’s I’ tab: the columns in the correlogram output, which
include the number of connections used in each distance class, the maximum distance, the

Moran’s | and its error, the P-value and the maximum /.

AN

v. s patial Structure Analyses

Settings  Moran's | lSemi-\-"ariance]

D.Class Count DistCntr Moran's I 5td Err P T f(max) I/I(max) A
1 11116 2.081 0.69 0.013 1} 0.&809 0.853
2 8502 3.817 0.52 0.015 a 0.682 0.763
3 A522 g.152 0.417 0.014 0 0.52 0.707
4 8578 6.4L5 0.34 0.015 1} 0.524 0,649
3 2314 7.5 0.258 0.014 0 0.436 0.592
& 038 g.472 0.174 0.014 0 0.381 0.456
7 1047z 9.472 0.095 0.013 1} 0.316 0.302
g 8138 10.5 0.01z2 0.015 0.311 0.302 0.041
a a538 11.521 -0.078 0.013 «<.001 0.316 -0.237 w

Moran's |
\

A _ Max. Maran's |
1.5 | ® Moran's|
2 3 4 5 6 7 8 9 10 11 12 15 14 15 16 17 15 19 20 21 22 23 24 25 26
Distance Units
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This is the main screen of the output, showing Moran’s I and the correlogram. You can see a
pattern in bird species richness, with positive autocorrelation at short distances and negative
autocorrelation at long distances. In the first distance class, the Moran’s | was equal to 0.69 +
0.013 (P < 0.01), and this value was calculated using the 11116 pairings of cells that are closest
together (between 1 and 3.16 cells apart; 2.08 cells apart on average — here the grid system used is
arbitrary, but if it were geodesic the units would be in km). The maximum possible value of

Moran’s | with this ‘connectivity structure’ is 0.809, and thus the relative value of Moran’s I is
0.853.

Generate the Moran Scatterplots. For each distance class (in turn) these show the

relationship between the variable’s values and those of the neighbouring cells.

You can see all the data, with dotted lines indicating the mean values. By default the screen
shows the first distance class (as shown below); to see other distance classes click on the arrows.

The distance classes are defined on the Y-axis label. Summary statistics are shown in the panel
on the right.
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Compute local autocorrelation (L.I.S.A.) and use Monte Carlo methods to test the
statistical significance of the resulting Moran’s /. This is good for analyzing regression residuals;
however, it can be time consuming, so ensure you used no more than 200 randomizations

(‘permutations’). Interpret the maps of local autocorrelation that result, and their significance.

In ‘L.I.S.A. Maps’ you can see the maps of the local autocorrelation. In this case, there is clear
overall autocorrelation structure, so local Moran’s | can be interpreted as a "leverage™ statistic,
showing the importance of each cell to the analysis of the overall pattern. NB you can save the
local Moran’s I values and their P-values.
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You can also explore the ‘Semi-Variance’ tab, trying different ways to fit alternative models
and interpreting the diagnostic statistics. This is covered below when dealing with GLS in the

‘Spatial Autoregression’ submodule of SAM, so see below for more.

Exercise St2: Spatial autocorrelation using connectivity/distance matrices

Create two connectivity matrices using the ‘Create/Edit Connectivity Matrix’ procedure described
above: Gabriel and a distance matrix that matches the smallest distance class in the previous
exercise (in the example shown itis 0 < d < 3.17). Use these matrices in turn to obtain single
Moran’s | values in the ‘Spatial Structure Analyses’ dialog (use the option “Use Available
Connectivity Matrix”, and then select the connectivity matrix you want).. This changes the way to
define spatial relationships among cells, shifting from geographic distances to connectivity

matrices.

For the distance matrix you should find the same results as those in the previous exercise, for the
first distance class (first screen grab below). To help understand correlograms better, you could
generate the values for entire correlogram in this way. The results for the Gabriel matrix, which is
calculated for only the very closest cells, show even stronger spatial autocorrelation (second
screen grab).
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¥ Spatial Structure Analyses

Settings  Moran's | Semi-‘v‘ariancel toran Scatter Plot

n Pairs11116

Moran's I: 0.69

jrd. Error:  0.013

Expected: -0.003
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Exercise St3: Spatial Clustering

This is K-means cluster analysis, with the option of spatially constraining the analysis.

Click 2 (or Structure > Cluster and Spatial Cluster) and do a 5-means cluster analysis of
the five climate variables, to make ‘climatic regions’ of South America. First do it without spatial
constraint and then with spatial constraint, using one of your connectivity matrices. The example

below uses the Gabriel criterion and Natural Breaks seeds.

Without spatial constraint With spatial constraint
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Cluster analysis by K-means is an iterative method to find the set of cells that minimize the TESS
(Total Error Sum of Squares) within each group (here called “cluster”). Because there is no
analytical solution to this method, the computational algorithm comprises an extensive search of
possibilities, trying to optimize the solution. The algorithm starts by assigning one cell for each
of the clusters, and then searching for the most similar cell to add to each cluster. When all cells
are assigned to clusters, the next step is to iteratively move cells between clusters, each time
seeing whether the overall TESS is reduced, thus maximize the similarity of the cells within each
cluster. You can limit how long (number of iterations) the algorithm will try to improve the
cluster analysis (minimizing the Sum of TESS among clusters) using the option “Maximum
number of iteractions” [complete with spelling error!].

Another option you have is how the cell seeding is done. The “Equal Intervals” option chooses
cells equally spaced in the variable dimension. The “Natural Breaks” option ranks the cells
according to a variable, and then chooses cells equally distant in this rank. You should be able to
guess what the “Random” option does! The“Enter Seeds” option allows you to define the seed of
each cluster.

So far, there is nothing “spatial” about clustering cells into groups. However, if you have a
connectivity matrix you can spatially constrain which cell may join which group. The idea here is
that all cells within a single cluster should be connected by the connectivity scheme you define. If
your connectivity scheme connects only neighbors at close distances, then all the clusters in your
analysis becomes continuous in space. However, once you impose a constraint to the optimization
of the clusters, there should be more heterogeneity within clusters compared to unconstrained
cluster analysis.

Be warned that for a large number of cells, and multiple variables at once, the procedure can be
time consuming.

The analytical results tell you how many cells are within each group, which cell was the “seed” of
each group, and the TESS of each group. Also, the “Sum TESS” among clusters measures how
well the cluster algorithm could group similar cells, and “Mean TESS” can be used to show which
group is more, or less, similar then the average.

Notice that using spatial constraint increases the Sum of TESS among clusters compared with an
unconstrained analysis, because this is a less optimal solution to the problem. However, it is
useful for defining geographic regions.

Before leaving, you can save a categorical variable that indicates to which cluster each cell

belongs.
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Exercise Mo1: Spatial Correlation
Here we see how to do correlations that are ‘corrected’ for spatial autocorrelation (taking into

account the magnitude of spatial autocorrelation in two variables).

Press Ctrl-N or click E to bring up the Correlation and Spatial Correlation dialog. First,
choose no geographic co-ordinates and calculate a matrix of Pearson correlations between all the
climate variables and bird species richness.

Choose X and Y as the geographic co-ordinates and calculate the correlation between two
of the variables, using the procedures to correct degrees of freedom, via two different
estimators (Dutilleul and Clifford). NB with spatial coordinates (the default option), you are only
allowed to choose two variables.

Choose one of the methods (Clifford is faster) and see how varying truncation distances

affects the geographically effective degrees of freedom and F and P.

™ Correlation and Spatial Correlation

Conelation Settings  Analptical Results l Graphical Results l

Correlation: birdrich x AET
Computing Clifford et al. (1989) method to estimate rumber of degrees of freedom.

Computing... Please wait a moment.
n = 374
Pearson's r = 0.856
Spearman's r = 0,858
Pearson's r F = 1355.149
Corrected = 24,994
Deg, Freedom = 372
Corrected = 6.88
Probhability = 0
Corrected = 0,002

With the example shown, if you choose bird richness and AET (using the CTRL key) the spatial
correlograms of the two variables will be displayed. After computing, you will see that the
degrees of freedom drop from 372 (n — 2) to only 6.9, using Clifford’s method! Even so, the
correlation of 0.885 is still significant (P < 0.001). If you use a truncation distance of 11, only the
positive parts of the correlogram are used, and the DF become 13.8 — this is a bit more liberal, and
assumes that Type I error problems are caused only by short distance spatial autocorrelation; long
distance autocorrelation, at least in this case, is better interpreted as spatial dependence.

Also examine the graphical results. The map shows the departure from the best-fit line (left-hand

graph) spatially.

Exercise Mo2: OLS linear regression

This is just the normal, non-spatial regression.
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Press Ctrl-R or click = to bring up the Linear Regression Analysis dialog. The analytical

output in SAM is the standard regression output; pay attention to coefficients of determination,

AIC values and partial slopes, with their associated statistics (including the variance inflation

factor, which tests for multicollinearity). The final three tabs that appear allow you to perform

regression diagnostics, including analysis of the spatial structure in the residuals. Check how

including different predictors changes the level of residual spatial autocorrelation. Note that this

is only for immediate diagnosis; a better evaluation of patterns in the residuals (including

significance tests of Moran’s /) should be done on saved residuals, via the ‘Spatial Autocorrelation

Analysis’ sub-module, as described in Exercise St1.

This is a very important module, and is explored further in the next few exercises. If you runa
standard OLS model of richness against the five environmental predictors in the example shown,
you get the following analytical results. The five environmental variables account for 83.8% of
the variation in richness (83.6% using the adjusted R2). The most important explanatory variable
is AET, according to the standardized regression coefficient (= 0.69). All explanatory variables
are significant at P < 0.01, except PET; however, these P-values may well be biased by the

presence of residual spatial autocorrelation.

A
¥

Linear Regression Analysis {OLS)
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The next screen (regression graphs), contains standard residual diagnosis graphs, including the
histogram of the residuals, which seem to be non-normal, leptokurtic — you can check the
skewness and kurtosis values in the previous screen, in the column “Residuals”, here equal to
0.613 and 1.874. You also have a plot of the observed versus the predicted values (you can check

for linearity here) and a plot of the residuals versus predicted values (no pattern is expected here).
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Perhaps the most interesting screens (in terms of what SAM does compared with most software)
are the next two, which allow you to explore spatial patterns in the model, especially in model
residuals (the green line of the correlogram). There is a relatively high Moran’s | of 0.25 in the
first distance class, indicating that Type | errors are biased. More important, there is a lack of
explanation of richness at these short distances. Look at the maps of the residuals (last screen) and

think about what is lacking in the model.
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M Linear Regression Analysis (OLS) |._||_rz|
Regression Settings] Analytical Flesults] Fegression Graphs | Spatial Structure Maps
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Exercise Mo3: Partial regression
Still using OLS regression, we now define ‘predictor sets’ to examine overlap in ‘explanation’.

Go back to the ‘Regression Settings’ tab. Enter some of the X-variables in one ‘predictor’
set and the others in another (use the button with a + in it, to the right of the box for ‘Sets of
Predictors for Partial Regression’ to create a second set of explanatory variables). You can
separate the explanatory variables in any way you wish — the example shown below demonstrates
the issue of multicollinearity when AET is defined as one predictor set and four other climatic
variables as the other. More commonly you may wish to separate spatial variables from

environmental ones, which we return to in later exercises.
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EAM g = - -
"% Linear, Regression Analysis

Reagression Settings] AnalyticalHesullsl Reqrezsion Graphs] Spatial Structure | Maps

AB AB B.A  1-{A+B)

) 0.764 |
Total Y ariation: 1 |
{8): & 0.765 |

Partial Fegression Results:

Predictor set [4}:
AET

Predictor set [B}:

RAIN

TENP

RELEV

PET
Total Explained by {4} = 0.754
Total Explained by {B} = 0.765
Total Explained by [A4B! = 0.835
[4A.E] Explained by {4} only = 0.073
[4:E] Shared Explained Variance = 0.711
[B.4] Explained by {B}! only = 0.054
[1-{&4+E)] Unexplained = 0.162

You can see the R? of each sub-model (AET only, other variables only and both), as well as the
partition into unique and shared components. Only about 7.3% of the variation in bird species
richness is explained solely by AET, and only 5.4% solely by the other four variables together.
By far the most of the explanation (71.1%) is shared, reflecting the strong multicollinearity in the
environmental variables. Note that this multicollinearity is also measured in the *Analytical
Results’ screen by the variance inflation factors (one for each X-variable) and the condition
number (like an overall VIF for the model).

Exercise Mo4: using a Trend Surface
This time we do a spatial partial regression, using a trend surface as the spatial ‘predictor set’.

In Data > Data Handling > Polynomial Expansions, calculate the variables for a second-
order trend surface. These are simply your spatial variables (X and Y or longitude and latitude —
select these in the left panel) and their polynomial expansion (order: 2). Generate the polynomial
terms and then Save them by moving them from the list of new temporary variables into the main
dataset.

Then enter the five spatial variables as one ‘predictor’ set and the environmental variables
in a second. Notice how adding broad-scale spatial variables reduces the residual autocorrelation

only a little.
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In the example shown, using the a 2nd-order trend surface (X + Y + X2+ XY + Y?2) increases the
model R2to 0.868. Again the partial regression is dominated by the overlap, this time between
‘space’ and ‘environment’. About 17.2% of the variation in bird species richness is explained
solely by the environmental variables, and only 2.9% by “pure’ spatial variation. However, most
of the explanation (66.7%) is shared, reflecting spatially structured environmental variation.

After including the spatial variables, AET is still the most ‘important’ environmental variable (see
the standardized coefficients in the ‘Analytical Results’ tab). Note also the standardized
coefficient for latitude. The residual spatial autocorrelation in the first distance class only
dropped from 0.427 to 0.407, because only broad-scale trends were used. The maps of the
residuals are similar to the original OLS that included only environmental predictors.

“#Linear Regression Analysis

Fegression Settings] Analytical Hesults] Regression Glaphs] Spatial Structure] Maps  Partial Regression l
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Total Explained by {4} = 0.838
Total Explained by {B} = 0.696
Total Explained by {&+E} = 0.868
[&.E] Explained by {4} only = 0.172
[4:E] Shared Explained Variance = 0.667
[B.&] Explained by {B} only = 0.0z9

[1-(&+E) ] Unexplained = 0.132
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You can use AIC to try different model combinations, selecting the one with smaller AIC
(differences of 3 or larger are often seen as enough to indicate better model fit). Warning: since
residual variance is downward estimated (because of spatial autocorrelation), this criterion will be
‘biased” and there will be a tendency to select over-complex models (with many variables).

Exercise Mo5: Eigenvector-based spatial filtering

Also known as “Spatial EigenVector Mapping” (SEVM), this is a technique that has been quite
recently developed and shows some promise. The purpose of this exercise is to use SEVM to
remove spatial trends in a (response) variable. You should notice that spatial pattern changes
among filters, but in general becomes less and less structured as the eigenvalue associated with

the filter becomes smaller.

Press Ctrl-F or click ¥ to bring up the Eigenvector-based spatial filtering dialog. Explore
the routine for eigenvector-based spatial filtering, interpreting the outputs. Note (a) the need to
establish a truncation distance and (b) that choosing the response variable is only necessary to

help in diagnosis (it is not intrinsically part of the filtering procedure). The challenge here is how to

select filters for further analyses — an issue not resolved in the literature, but minimizing residual
short-distance spatial autocorrelation is usually a good idea. Observe the spatial patterns of each
filter (maps) and recognize that spatial structure starts to become more “local’ when using filters
with smaller eigenvalues. Notice how selecting filters will reduce the level of residual

autocorrelation. Save the filters you selected, for further analyses.

In the example shown, bird richness is the response variable (optional — just to help diagnosis),
the five environmental variables are “‘predictors’ in a partial regression (again optional) and a
truncation distance of 5 is used. You will see the eigenvalues and the Moran’s I, in the first
distance class, for each filter. The first filter has a Moran’s | a bit higher than 1 (1.06), and a
squared correlation of 0.265 with richness. Notice that the figure is NOT a correlogram, but it
shows the short-distance Moran’s | for all the filters.
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Filtering Settings  Main Results | Filters Hesults] Filters Selection] Reqression Graphs] Maps ]
Eigenwvector Eigenwvalue Moran's I r# P ~
Vector 1 23.738 1.055 0,265 <.001 =
Vector Z ZZ.887 1.04z 0,095 <.001
Vector 3 z21.819 1.026 0.0z7 0.001
Vector 4 20.889 1.011 0.03 <.001
Vector 5 19.918 0,993 0.143 <.001
Vector [ 15.15 0,962 0.004 0.201
Vector 7 17.66 0.955 <. 001 0.793
Vector g 17.377 0.945 0.074 <.001
Vector 9 16.337 0.9z7 <. 001 0.564
Vector 10 15.416 0,909 <. 001 0.971
Vector 11 14,625 0.89z2 0.01 0.05
Vector 1z 14,345 0.897 0.0z29 <.001
Vector 13 13.623 0.868 0.024 o.oo02
Vector 14 12.315 0.544 0,008 0.081 3
Filters Spatisl Autocorrelstion
1
0.3
0g -
- -
o
= 04 o
= .
5 02 .
= * -
] * * - * s * .
- L "
-0z RENe eyt . O Sl LR RN W .oﬂ.o.,.o. ",
* " ** L
-0.4 « * ©
5 10 15 20 25 30 35 40 45 S50 S5 60 GBS YO 75 80 85 90 95 100 105 110 115 120
Fitter Mumkber

In the second screen, you can see the maps and other graphics for each filter, including the
correlogram and the relationship with the response variable you chose. It is interesting to see
spatial structure changing when obtaining filters with lower eigenvalues, as shown below for
filters 1, 5 and 15. This structure is also dependent on the truncation distance (which explains
why there are two patches, not one, in the filter 1).

Spatial Fiter n° 1 Spatial Fiter n° § Spatial Fitter n° 15

The next screen is to help selecting filters. The filters marked respect the criterion you used in the
opening screen, but you can add or delete other filters. Each time you select a filter, it will update
the parameters of the multiple regression, the correlograms and the maps (in the next screen).
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Filtering Settings] b ain Hesults] Filterz Fiesults  Fiters Selection | Regression Graphs] Maps ]

Selected Eigenvectors: Fegression Summary:
Spatial Filter n 1 # | |Predictors Only: 5
Spatial Fier n® 2 Coeff. Det. (r®): 0.838  P-Value: 0 AICc: 4097.881  CN: 5.574

| Spatial Filter n® 3
| Spatial Filter n? 4

Spatial Fiter r2 5 Filters Only:
Spatial Filter r® & Coeff. Det. (r*): 0.172 P-Value: <.001 ATCo: 4720.943 CH: 1
Spatial Filter n® 7
Spatial Filter n® 8 | |Full Model (Predictors + Filters):
vl Spatial Filter n? 3 Coeff. Det. (r®): 0.901 P-Value: 0 AICc: 3937.384 CH: 5.921

Spatial Filter n® 10 S
Spatial Filter n® 11

V| Spatial Filter n2 12 Partial Rggression Analsys:

| Spatial Filter n213 [a] Predictors only = 0.7Z9
Spatial Filter n2 14 [b] Shared Explained Variance = 0.11
Spatial Filter 215 [c] Filters only = 0.063

v| Spatial Filter n® 16 [d] Unexplained = 0.099

Spatial Filter 217
Spatial Filter n2 18
| Spatial Filker n® 19 -
v| Spatial Filter n? 20 Coefficients P-Value V.I.F. v
| Spatial Filker n? 21
Spatial Filter n?

4 hirdrich
+ Estimatec
R T & Residuals.

Spatial Filter n® 24
Spatial Filter n? 25 0f---= i = e
Spatial Filter n® 26
Spatial Filter n? 27
Spatial Filter n® 28
| Spatial Filter n® 29

Spatial Filter n® 30 15
| Spatial Filter n® 31 bt
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Maran®s |

Distance Class

For example, using the first 5 filters will give you an squared-correlation with bird species
richness of 0.56, but there is still a significant (almost 0.5) Moran’s | residual autocorrelation in
the short distances. Increasing to the first 10 filters, the R2 goes to 0.64, but quite a lot of residual
spatial autocorrelation still persists. A reasonable balance is achieved by choosing filters 3, 4, 9,
12, 13, 16, 19, 20, 21, 29 & 31 — this reduces residual spatial autocorrelation to a low level, while
not overlapping much with the environmental variables in partial regression analysis. But looking
at the maps in the next screen (and below) you can still see some local structures in the region of
Andes. Choosing filters 2, 4, 6, 9 and 12 is simpler and quite satisfactory but leaves a bit more
small-scale spatial autocorrelation in the residuals; again the map of residuals shows patterning in
the tropical Andes. Filter selection is a difficult issue!

“#" Eigenvector-based Spatial Filtering

Filtering Settings] I ain Hesults] Filters Hesults] Filters Selection | Redression Graphs  Maps

birdrich

Estimated by Full Madel (%ars+Filters)

Residualz of Full Model (Vars+Fiters)
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Save your filters, and also the “Linear Combination Filters” for further analysis and Press

Ctrl-R or click == to bring up the Linear Regression Analysis dialog again. Use the filters you
selected to evaluate, using a partial regression within the OLS routine, how adding the filters as
independent variables affects the outputs, especially the partial regression coefficients, the
coefficient of determination and, more importantly, the residual autocorrelation. This will add a
little to what you have just done. Repeat the process using the linear combination of filters (which

is a single variable representing the selected filters) instead of the filters.

EAM g = - -
% Linear Regression Analysis

Riegression Settings] Analytical Flesults] Reqression Graphs] Spatial Structure] Maps Partial Regression ]

AB A:B  B.A 1-(A+B)

{ak = 0838 |

Total W ariation: 1 |

Bk & 0162

Partial Fegression Results:

Predictor set [4}:
ART
RAIN
TEMP
RELEV
PET

Predictor set [B}:
Spatial Filter n® 2
Spatial Filter n* 4
Spatial Filter n® 6
Spatial Filter n® 9

1

Spatial Filter n®* 12

Total Explained by {4} = 0.838
Total Explained by {B} = 0.1la2
Total Explained by {A4B! = 0.884
[4.E] Explained by {4} only = 0.723
[4:E] Shared Explained Variance = 0.118
[B.4] Explained by {B}! only = 0.045
[1-{&+E)] Unexplained = 0.1156

Exercise Mo6: Multi-model inference

This is an increasingly popular and rigorous approach to model selection.

Press Ctrl-G or click '=¥ to bring up the Multi-model inference dialog. Using the five
environmental variables, choose a model for bird species richness.
Now add the five environmental variables as variables to be selected, and the linear

combination of filters as a variable (or all the filters you selected as variables) to be present in all
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models. Note that SAM tells you how many models (i.e. possible combinations of variables) will be

evaluated; if this number gets very high, computational time will be considerable.

¥ Model Selection and Multi-Model Inference EJ @lgl
Model Settings  Model Selection Results ] Madel Averaging Results | Model Averaging Graphical Resuls |

Total of 31 0OLS models run, in <.01 minutes A

Fesponse wariable is birdrich.
Explanatory wvariables are:

Wariable #1: RAIN

Wariahle #2: TEMP

Wariahle #3: RELEV

Variahle #4: PET

Wariable #5: AET

Wariable #o: Linear Combination Fi...

Results for the OL3 Model Selection procedure, sorted by Akaike Information Criterion (AICc).

Model Variahles nvars r* Cond. Hham. A4TCc Delta ATCc Lijgil=) ATICc wi
Mod #5 l, 2, 3, 4, 5, & ] 0.554 6.013 3976, 0660 1} 1 0.664
Mod #20 2, 3, 4, 5, 0 5] 0.583 5.039 3978.03 1,364 0. 506 0.336
Mod #3 l, 2, 4, 5, & 5] 0.559 S.5a6l1 4021, 569 44,903 <.001 <.001
Mod #23 Z, 4, 5, 6 4 0.565 4,454 4022, 001 45,335 <.001 <.001
Mod #21 Z, 3, 5, 6 4 0.566 3.253 40258, 51 £l.544 <.001 <.001
Mod #6 1, 2, 3, 5, 6 5 0.866 4,292 4028. 68 £z2.014 <.001 <.001
Mod #27 3, 4, 5, 6 4 0.862 4. 368 4039, 561 62,894 <.001 <.001
Mod #12 1, 3, 4, 5, & 5] 0.562 5.35 4039, 904 63,238 <.001 <.001
Mod #30 4, 5, o 3 0.558 3.577 4047, 344 70,678 <.001 <.001
Mod #15 1, 4, 5, & 4 0.559 4,643 4047, 725 71.059 <.001 <.001
Mod #4 1, 2, 3, 4, & 5 0.54z2 3.621 4090, 189 113.522 <.001 <.001
Mod #28 3, 5, 6 3 0.836 1.706 4101. 312 124.64f <.001 <£.001
Mod #13 l, 3, &, & 4 0.836 3.276 4102.809 126.143 <.001 <.001
Mod #7 1, 2, 4, & 4 0.538 2.734 4103, 966 127.3 <.001 <.001 e

AN
¥

Model Selection and Multi-Model Inference

Maodel 5ettings ] Model Selection Results  Model Averaging Results | Model Averaging Graphical Fesults ]

Parameter estimates awveraged across 31 0LS models, using Akaike Weights (AICc wi) A
n: 374 r: 0,94 r?: 0,554 r? adj: 0.883 AICc: 3975.256
Wariahle Iuportance Coeff. 3td Coeff. 3td Error T 95% Lower a5:
Constant S -119.81z2 0 1z.219 -9.806 -143.761 ol
RATN 0.664 0.009 0.054 0.003 2.778 0.003
TEMP 1 0.455 0.258 0.055 g8.324 0.348
RELEV 1 0.014 0.173 0,002 6,988 0.01
PET 1 0.114 0.z279 0.015 7.515 0.0584
AET 1 0.183 0.557 0.016 11.163 0.151
Linear Cowmbination Fi... 1 l.005 0.259 0.083 12.102 0.842

Parameter estimates for the best 0LS model, according to the Akaike Information Criterion (AICc).

Wariahle Coeff. 3td Coeff. 35cd Error T 95% Lower 95% Upper
Constant  -119.593 0 12.203 -9.8 -143.511 -95.675
RATN 0.009 0.054 0.005 1.845 <£.001 0.018
TEMP 0.457 0.259 0.055 g.369 0.35 0.564
RELEV 0.014 0.174 .00z 7.01 0.01 0.018
PET 0.115 0.28 0.015% 7.558 0.085% 0.144
AET 0.178 0.541 0.015 11.53 0.145 0.208
Linear Cowmbination Fi... 1 0.258 0.083 1z.0749 0.838 1.162
e
< >

This suggests that all the variables are important. However, note that we have not completely
eliminated the small-scale spatial autocorrelation, so the routine has probably over-fitted. The
selection and model averaging suggest that AET is the most important variable by far, in
accounting for bird species richness. The condition number ( a kind of aggregate VIF score)
suggests issues of multicollinearity with many of the models, but notably not for models 31 (AET
+ filters) and 28 (AET + topography + filters). These simple models would be worth further
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investigation. Model 28 is very similar to a model resulting from a PCA of the five
environmental variables: PCAL + PCA2 + filters — try this if you like.

Exercise Mo7: Spatial autoregression — Generalized Least Squares

This exercise and the next one look at various forms of autoregression, a commonly used form of
spatial regression. This involves three groups of techniques that can all be found under
Modeling—Spatial Autoregression. This is a very complex set of routines, although all outputs are

similar to the OLS previously described.

Press Ctrl-U or click P to bring up the Lagged Models dialog. The ‘lagged-models’ are
based on the residual analyses of ‘pure autoregressive’ models. Notice the effect of alpha and

how autoregression, using the response variable, eliminates the residual spatial autocorrelation.

In the ‘Pure autoregressive model’, SAM allows you only to choose a response variable, because
this first model deals only with a single variable. In the first screen of results are the r2 and the
AIC; the new parameter estimated, the “spatial autoregressive coefficient”, is here equal to 0.885
+ 0.043 for richness. So, according to r2, about 79% of the variation in bird species richness can
be accounted for by the spatial weighting structure (1/geographic distances) among cells. The
other screens are similar to OLS, and notice that the Moran’s | is 0.237, so this simple
autoregressive model still leaves short-distance spatial structure, and the map in the last window
will show why (again)! If you go back to the opening (“Settings”) screen and mark the “Lagged
Response” or “Lagged predictor” models you can repeat the procedure, but incorporating
environmental ‘predictors’ too. But let’s wait for the autoregressive models in the last routine
(SAR and CAR), to try this.

Click %% to bring up the Generalized Least Squares dialog. This runs an iterative form of
Generalized Least Squares (GLS), also called ‘krigging regression’ or ‘generalized krigging’, in which
the residual autocorrelation in the OLS is modelled by semi-variograms (see Exercise St1). These
patterns are incorporated into the GLS procedure to obtain all coefficients. This routine is useful
for understanding the logic underlying spatial regression and is a good one to focus on. The last
group of routines includes the well-known conditional and simultaneous autoregressive models

(CAR and SAR). In general, the outputs are similar, and for learning purposes, any one can be

used. Pay attention to the following:

- The existence of an autoregressive coefficient, which can be calculated by the procedure or
can be entered directly (in SAR, CAR and lagged models);

- The distinction between a residual term and an error term, so that output for diagnosis of
spatial autocorrelation and patterns in space contains four correlograms and maps (the
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observed Y, the predicted Y, the residual and the error). If you use GLS, you will see that a
strong pattern appears in the residuals, since you add this spatial element there! The error,
on the other hand, must be spatially independent;

For SAR and CAR, different R? values are given (understand their difference, and that you
must be careful when interpreting them).

GLS or “krigging’ regression is very useful for learning about spatial modelling. The results
below are from using all five environmental variables to model bird species richness. After
clicking ‘Next’, you should see another screen, with a semi-variogram of an OLS model, and
several modelling and diagnosis windows. These will help you to use different models (spherical,
exponential, linear, and so on) with different parameters to describe the spatial structure in the
OLS residuals. This is the same module as the one under Structure—Spatial autocorrelation.

We can try a spherical model, with CO equal to 1500, C1 equal to 2650 and a = 21. A blue line
describing this model appears. CO is the ‘nugget’ effect and describes the intercept of the line,
whereas C1 is the difference between the maximum expected semi-variance (the ‘sill’) and the
intercept. The value “a’ is the ‘range’ of the semi-variogram: the distance in which the sill is
achieved. You can try different combinations of these three values (for other models as well), and
check the diagnosis windows, in the lower right corner. In this window you have an OLS fit
between the expected semi-variances (defined by your modelling process) and the observed ones,
with the r? of the model. Using these values for nugget, sill-nugget and range, the spherical model
has an r2 of 0.829. The P-values associated with the t-tests are 0.027 (for the intercept) and 0.020
(for the slope). Thus, the results suggest that the chosen model is adequate for modelling the
spatial structure in the residuals.

! Generalized Least Squares

GLS Settings  Modeling Residual Spatial Component ]

4,400, = Spatial Modeling
4,200, <@ Empirical Awailable Models:

— Esti Mote: Not all
4,000 B + Spherical Model parameter
3,500 " Ewponential Model combinations
§ 3,600 " Gauzsian Model yield an
B 3400 invertible

" Huole Effect Madel

IE 3,200 . covarnance
% 5o " Powered Exponential Model matrix
& 2,300 " Matémn Model

" Truncated Linear Model
" Pure Mugget Model

2,600
2,400

= ool Parameters
' 4 B 8§ 10 12 14 16 18 20 22 24 26 25 30 32 1500 a2
Distance Units €y ’
0L3 Residuals Semi-Variance: s’ < -'|285D |
D.Clas= Up.Limit Enp. Jeni-Var. E=zt.%eni-Var. Model Diagnostica:
L E Aok Allepelks n: 17 r*: 0.G629 ATC: 205,434
2 4,123 2608.54 2270. 417
D rm mma e coutt
" ) ) Intercept: Tel. 395 0.027
5 7.211 Z985.359 2611.31 Slope: 0.759 0.0z
5] §.062 3089.185 £2951.093
7 9.055 3llz.&02 3107.817
g 10 2979,392 3249.784
w LCompute GLS

This is probably not the best possible model (you could check this later), but it seems to be good
enough, so we can go on. Click ‘Compute GLS’ and you will have standard regression output, as
before.



¥ Generalized Least Squares

GLS Settings] Modeling Fesidual Spatial Component  Analytical Results | Regression Glaphs] SpatiaIStructure] Maps ]

Results for birdrich az a response wariable, and 5 predictor wariable(s). T
n: 374 F: 154.078 P: 154.075
OL3 Result: r: 0.915 r®: 0.838 ATC: 4099.758
Explained by Predictor Variahles: r: 0.845 r*: 0.714 ATIC: 4315.62Z2
Total Explained (Predictor 4+ Space): r: 0.94 r#: 0.554 ATC: 39785.519
Wariahle OL3 Coeff. GLI Coeff. 34td Coeff. Std Error itz P Value
Constant -73.493 47,532 0 35.167 1.352 0,177
RAIN 0.015 0.004 0.025 0.005 0.86 0.39
TEMF 0.386 0.31z 0.177 0.053 5.91z2 <.001
RELEY 0.021 0.015 0.187 .00z 6. 447 <.001
PET 0.037 -0.004 -0.01 0.023 -0.185 0,853
AET 0.zz27 0.16 0.455 0.017 9.308 a
Descriptiwve Statistics:
birdrich Eztimated Error
Min 45 22,027 -2358.071
M 712 5583.755 199,523
Mean 337.853 333.485 4. 368 v

Save

The main point now is that you have results from a standard OLS, for comparative purposes, and
this includes the R2 and AIC, in the first three main lines of the output.

The most awkward thing here is that you have two different R2s for GLS, and this requires some
clarification. It is still debated whether GLS (as well as other spatial models) provides an R?, in
the sense of best fit, and what it really means. SAM uses the following strategy. The first R?,
defined as “Explained by predictors” and equal to 0.714 in this example, is the pseudo-Rz2. This is
estimated by correlating the observed values with the estimated values, which in turn were
calculated using the partial regression slopes (shown below). This is smaller than the one from
OLS because part of the spatial variation in richness that was ‘explained’ by the predictors in OLS
was ‘transferred’ to the residuals in GLS, according to the semi-variance model you defined.
However, this is not the ‘overall” explanatory power of the model, because you added more
information (i.e., the spatial structure). So another R2 is calculated, using the ‘ratio’ of residual
variance after fitting the full model and performing a Cholesky decomposition of spatially
modelled residuals (you can check the HELP of SAM to get the mathematical detail). The
important point is that this second R2 is the overall explanation of the model, which includes both
‘predictors’ and space (in the residual spatial structure).

You can see the same thing in the “Spatial Structure” screen with the correlograms of the
residuals. Here ‘residuals’ are defined as meaning the spatially modelled component of variation
not accounted for by the environmental variables, and that’s why it has a very strong spatial
structure (because you added this when modelling the semi-variogram!). By doing this you
‘released’, at the same time, the effect of the spatial structure of the environmental variables on
richness. The “error’, on the other hand, is the non-spatially structured part of the error, and this
should not have any spatial pattern. Indeed, this is what happens in the correlograms. However,
the maps indicate that there is something about the tropical Andes that is still not being accounted
for (notice that you now have four maps, instead of three).
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GLS Settings] Modeling Fesidual S patial Component | Analytical Results | Regrezsion Graphe  Spatial Structure ] I aps ]
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Going back to the analytical results, examine the modelled effect of each environmental variable,
and compare with the OLS results. In both, AET is the most ‘important” environmental variable,
according to the standardized slopes. This comparison of spatial and non-spatial solutions
suggests some model stability. As occurred when using spatial filters in the model, RAIN is not
significant now, but in the GLS the effect of PET is not significant either.

Exercise Mo9: Spatial autoregression — SAR and CAR

Press Ctrl-L or click A to bring up the Spatial Autoregressive Models dialog. Do the
same thing as you have just done, but using SAR and CAR.

# gpatial Autoregressive Models

Spatial Filter n® 1
Spatial Filter n? 2
Spatial Filter n® 3
Spatial Filter n® 4
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SAR and CAR are actually based on the same GLS routine; the only difference is that you are not
allowed to model the residual autocorrelation in SAR and CAR, which is instead defined
according to the equations shown in the screen and based on the same autoregressive parameter
you calculated in the beginning of this exercise. Notice that, in SAR, for example, the
‘importance’ of environmental variables is similar to that in GLS: both PET and RAIN are not
‘significant’, although the P-values are close to the usual critical value of 0.05. There is also a
relatively high spatial autocorrelation (Moran’s 1) in the first distance class of errors, equal to
0.182 in the first distance class! This indicates that a better model should be tried, and you can do
this by trying different definitions of spatial error structure, in the next activity.

Choose one autoregressive model (e.g., ‘pure’ autoregressive, SAR) and explore how using
different alpha values (ranging from 1.0 to 3.0) and different definitions of spatial distances and
connectivity affect the model outputs. Pay attention to R?, AIC, regression coefficients and residual

and error autocorrelation.

To explore this, let’s go back to the ‘Pure Autoregressive Model’ (in the lagged models routine),
for simplicity. If you change the alpha to 2.0, the weighting structure will be defined as 1/D?, so
closer localities will be given more weight in generating the model. Doing this, the “‘Spatial
Autoregressive Coefficient’ increases from 0.885 (using alpha = 1) to 0.917, and the Moran’s | in
the first distance class goes down to 0.11. The AIC may be helpful, too: it decreases from
3123.92 to 2979.85, indicating a better model fit (differences higher than 3 can suggest
improvement in the model). Going to alpha = 3, the autoregressive coefficient goes up further to
0.926, and AIC decreases to 2862.88. It is clear that increasing alpha improves model fit, and this
tendency will continue for a while. In practice, alphas of 2 or 3 are usually considered enough to
give a good description of fine-scale spatial structure.

If you use the rook connectivities (distances < 1.2), the autoregressive coefficient increases to
0.919 + 0.007, and the Moran’s | in the residuals is —0.023 (note that you do not have a
correlogram for this, since you are using a connectivity matrix directly — but you can do one if
you want, just save the residuals and go back to the ‘Spatial autocorrelation” submodule.

Now go back to SAR and do the same thing, so you can check how changing spatial structure of
errors affects the slopes of the environmental variables. You will see that the results converge to
those from the GLS above, since AET is still the most ‘important’ environmental variable (but not
with such a high relative importance as before). Using an alpha of 1 leaves some spatial
autocorrelation structure in the residuals (0.182). With an alpha of 3, the Moran’s | of the error,
in the first distance class, drops from 0.182 to 0.052. When using rook connectivities (D < 1.2),
only RAIN is not significant, but it should be noted that the relative importance of AET is much
reduced.

In this example of South American bird species richness, all spatial regression models show
similar results, at least in the sense that AET is always the ‘best” environmental ‘predictor’. The
same applies for the OLS and filtering approaches. However, this will not always be the case, and
each model should be carefully interpreted with respect to its assumptions, scale effects and
robustness. To see a recent demonstration of exactly this, see the following paper, which a large
group of us published recently:
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Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B. et al. (2009) Coefficient shifts in geographical
ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32, 193-204.

Exercise Mo10: Geographically weighted regression

Geographically weighted regression (GWR) performs a series of local regressions, one for each cell
in the grid. GWR is a relatively new method for local regression. The idea behind it is that there is
a lot of information that could be extracted from the relationship between each cell and its
neighbours. Thus, it is reasonable to perform one regression for each cell, taking into account the

surrounding cells, but weighting them according to a distance function.

Press Ctrl-W or click L) to bring up the Geographically Weighted Regression dialog.
Specify the same regression model as before (in the example shown: the five environmental
variables modelling bird species richness). In GWR you must, additionally, define a distance
function (“Spatial Weighting Function” in the SAM dialog). Choose the options shown in the
screen shot below and run the GWR.

™ GWR: Geographically Weighted Regression
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For “Spatial Weighting Function” in SAM, three options are available: “Bi-Square”, “Gaussian”
and “Moving Window”. The first two are very similar, except that the “Bi-Square” truncates at a
given distance (for this reason it is faster). Both draw a multi-dimensional normal distribution
over the target cell, and weight the influence of the neighbours according to the normal
distribution as a function of distance to the target cell. This “normal distribution” has a
parameter, the standard deviation, which we will call “bandwidth”. Because it is a spatial



regression, the parameter “bandwidth” is measured in units of distance. This is a very important
parameter in GWR, and defines what is “local” and “regional”.

Another important option is the “Adaptive Spatial Kernel”. When this option is selected, instead
of measuring the “bandwidth” in units of distance, you measure the “bandwidth” in units of
neighbouring cells. This strategy helps avoiding border effects, and control for sampling effects
among local regressions. Usually, this improves the fit of the model, and should be used if good
fit is the aim.

Because the “bandwidth” is a parameter to be estimated (unless you have an specific measure of
what is local and what is local), and it affects the goodness-of-fit of the model, it can be
optimized. SAM searches for the bandwidth that minimizes the AlCc if you select the option
“Optimization to Minimize AICc”, and in this case you define the range of variation in the
bandwidth to the searched.

“M GWR: Geographically Weighted Regression

Regression Settings  Analvtical Result: | Regression Graphs | Spatial Stlucture] I apz ] LocaIHesultsl

Fesults for birdrich as a response wariable, and 5 predictor wariable(s). -
Spatial function: Bi-3quared Adaptive Kernel: 10% neighbors.

Optimization using The Golden Section 3earch, and Akaike Information Criterion (&ICc),
zearching from 10 to 15% of neighbors.

Diagnostic Statistics:

Mumber of Locations to Fit Model (n): 374

Sicma: GO95. 692 [OL5: 57.454)
Effective Number of Parameters: 104,92 [ALS: &)

Akaike Information Criterion (AICcC): 3778387 (QLS: 4099,753)
Correlation Coefficient ir): 0.984 (0L3: 0.918)
Coefficient of Determination (r®): 0.268 (OLS: 0.838)
adjusted r-square [(r? Adj): 0.956 (0L3: 0.837)

F {x*): 74,042 (OL3: 351.551)
P-walue (r2): ] (OL3: 0O)

Local Regression Parameter Descriptiwe Statistics:

Wariahle Minimm Lwr Quartile Median Upr Quartile Maximum
Constant =760, 54545 7.39312 239.12554 433.82313 1029, 06902
RALTN -0.05114 -0.0043 0.0087 0.03001 0.13571

In the Analytical Results tab you will find the GWR results and the OLS results (for comparison).
The r? of the GWR is 0.968 (as opposed to 0.838 in OLS), and the AICc has decreased from 4100
in OLS to 3778 in GWR. However, to achieve such a close fit you lose generality, and now you
have n linear equations to estimate the response variable (where n is the number of cases). The
descriptive statistics of the parameters of those equations are shown in this same screen.

Also in the Analytical Results screen is an ANOVA table to compare the explanatory power of
the GWR with OLS. It is very important to use this table, because GWR has 104.9 effective
parameters (as opposed to only 6 in OLS), and thus it is expected provide more explanatory power
compared with simpler models. This ANOVA table takes into account the over-parameterization
of GWR, and is thus a fairer comparison with OLS.
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As for the autocorrelation in the residuals, the correlogram shows that the model successfully
accounted for all the contagious effect at short and long distances. You can try changing the
bandwidth and see how it affects the correlogram of the residuals.

As expected, the map of the residuals is much more “random” than in the OLS, since the residuals
are almost completely autocorrelation-free.

An additional result you have in GWR is the “Local Results”, in which you can examine the
spatial variation in everything related to the regression! This is perhaps where the main interest
lies, with GWR. Because GWR performs one regression in each cell, you also get all the standard
OLS regression results per cell. In particular, you can map the r? or AlCc (adjusted r? shown in
the screen grab below) and check where the model could account for the local variation better and
worse. Similarly, the maps of the regression coefficients, for each explanatory variable, can be
useful for understanding the local fit of each variable throughout the map. All the variables
available in this last tab can be saved for further analysis.
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HELP

Finally, remember about the HELP file of the program, which can be double-clicked from Windows
Explorer (in the Program Files) if it does not open from within SAM. Remember that SAM is being
continuously updated and many new amendments are (always) under development. It is worth

periodically checking the website (www.ecoevol.ufg.br/sam) to see/download these

improvements. More importantly, please contact the SAM developers if you find bugs or
problems, or have suggestions that can improve SAM.
We hope you have enjoyed this workshop, and that it has stimulated you. Perhaps many of

your questions have been answered, but now replaced by much more complex ones! ©

Best wishes!

Thiago (rangel.ufg@gmail.com), Richard and Alexandre.




