
Trends
Evidence suggests that insufficient
transparency is a problem across much
of ecology and evolution. Results and
methods are often reported in insuffi-
cient detail or go entirely unreported.
Further, these unreported results are
often a biased subset, thus substantially
hampering interpretation and meta-
analysis.

Journals and other institutions, such as
funding agencies, influence research-
ers’ decisions about disseminating
results. There is a movement across
empirical disciplines, including ecology
and evolution, to shape institutional poli-
cies to better promote transparency.

Institutions can promote transparency
by requiring or encouraging more dis-
closure, as with the now-familiar data
archiving, or by developing an incentive
structure promoting disclosure, such as
preregistration of studies and analysis
plans.
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To make progress scientists need to know what other researchers have found
and how they found it. However, transparency is often insufficient across much
of ecology and evolution. Researchers often fail to report results and methods in
detail sufficient to permit interpretation and meta-analysis, and many results go
entirely unreported. Further, these unreported results are often a biased subset.
Thus the conclusions we can draw from the published literature are themselves
often biased and sometimes might be entirely incorrect. Fortunately there is a
movement across empirical disciplines, and now within ecology and evolution,
to shape editorial policies to better promote transparency. This can be done by
either requiring more disclosure by scientists or by developing incentives to
encourage disclosure.

Science Needs Transparency
Science is a uniquely effective tool for understanding the world, and ecologists and evolutionary
biologists have built a robust body of scientific knowledge over the past century. However,
several common practices are limiting progress in these fields. For science to progress, results
and clear explanations of methods must be shared with other scientists. Although this funda-
mental principle is widely understood, practices that cloud transparency of methods and results,
such as selective reporting (see Glossary), appear to be far more common than they should.
This is unlikely to be an issue of deliberate dishonesty, which we assume is rare in ecology and
evolution. Instead, we believe that the unintended negative consequences of insufficient trans-
parency are often unrecognized by many members of the scientific community. In addition, the
institutions that shape our choices often inadvertently encourage or reward choices that
obstruct transparency [1]. Without sufficient transparency, we are hindered in our ability to
interpret published findings, conclusions based on published literature can be biased or wrong,
and meta-analytical syntheses are weakened [2]. Although these challenges to transparency
vary across disciplines and subdisciplines, evidence suggests they are often common and
present very real problems for the advancement of ecology and evolutionary biology. In this
paper we first review evidence of insufficient transparency in ecology and evolutionary biology,
and we then discuss new efforts in these fields and in empirical science in general to improve
transparency and thus improve scientific progress.

Evidence of Insufficient Transparency
Selective reporting: once researchers have collected and analyzed data, they commonly publish
only a portion of the results derived from these data (Figure 1). Such selective reporting can lead
to publication bias if researchers preferentially publish particular types of results, such as those
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Glossary
Blind observation: the observer
(person making measurements) is
unaware of the group membership (e.
g., treatment condition) of the subject
being measured.
Confirmation bias: the widespread
human tendency to interpret
observations as consistent with one's
belief about how the world works or
to preferentially search for and recall
such observations.
Effect size: a measure of study
outcome that indicates the
magnitude and direction of the
outcome of each study. Effect sizes
can be based on the magnitude of
difference between groups or the
strength of the correlation between
variables. Effect sizes can be
unstandardized (e.g., mean difference
or covariance) or standardized (e.g.,
Cohen's d or correlation coefficient).
Exploratory analysis: conducting
many graphical and/or statistical
comparisons in an effort to identify
previously unidentified relationships
among variables in a dataset.
False positive: In null hypothesis
testing, a rejection of the null
hypothesis when the null hypothesis
is actually true (type I error).
Hypothesizing after results are
known (HARKing): presenting a
post hoc explanation for an
exploratory result as though it were
an a priori hypothesis. Many of us
were taught to HARK and to write
papers as though we were testing a
priori hypotheses even if we were
conducting exploratory analyses.
Although philosophers debate the
importance of distinguishing between
a priori and post hoc hypotheses,
HARKing is problematic even if one
discounts this distinction. This is
because HARKing often serves to
conceal selective reporting of
exploratory analyses (often without a
deliberate attempt to deceive), and
thus skews the distribution of
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Figure 1. ‘Business As Usual’ in Ecology and Evolution Allows and Often Promotes Practices that Keep Many
Analyses Hidden, and This Leads to Biases in the Published Literature. For example, current practices (A) could
result in only the three ‘unclouded’ graphs making it to publication, leaving the impression that all results were consistently
positive. However, full transparency (B) will sometimes leave a very different impression of results. In this illustration, we see
results that are more complicated and less consistent, and suggest a much smaller average effect, if any.
with the strongest or the most surprising patterns. However, selective reporting is not limited to
the classic ‘file-drawer’ problem in which a study that does not produce the hoped-for result
goes unpublished (e.g., [3]). For instance, researchers might conduct multiple alternative forms
of an analysis and report only the one with the strongest relationships or lowest P values. This
practice has become known as P-hacking [4,5]. P-hacking and other forms of selective
reporting can be masked by hypothesizing after results are known (‘HARKing’) [6]. We
might convince ourselves of the validity of selective reporting in various ways. For instance,
human cognitive tendencies, such as confirmation bias (Box 1) [7], can lead researchers to
select evidence that lends the clearest support for a pre-existing hypothesis. Alternatively,
selective reporting might not seem to be problematic because researchers often tend to be
more interested in the existence of patterns than in their absence. However, ignoring weak,
reported results.
Inflated effect size: an estimated
effect size that is larger than the
actual effect size, for instance
because the researcher selected the
covariate that led to the largest effect
in the target relationship after testing
multiple covariates.
Meta-analysis: the quantitative
synthesis of the outcomes of different
studies, based on combining effect
sizes, to determine overall results
across studies and sources of

Box 1. Confirmation Bias

People have a strong tendency to interpret observations as supporting their existing worldview and to seek out evidence
in support of this worldview [7]. This can play out in various forms of selective reporting as we convince ourselves that we
are simply focusing our reporting on the real phenomena. Confirmation bias can thus help to rationalize P-hacking and
selective reporting, often by preventing us from recognizing our own subtle HARKing. Confirmation bias can also
influence data gathering. Studies in ecology and evolution in which individuals gathering data were not blind to the
treatment condition or the predicted outcomes showed stronger effects and higher rates of significance than studies with
blinded observers [55,56]. Blind observation is fairly rare in ecology and evolutionary biology [57] in part because in some
studies blinding is nearly impossible. However, in a large sample of recent studies, 56% that could have benefited from
blinding could also have implemented it with little difficulty (e.g., no additional personnel), and an additional 22% could
have adopted blinding by employing an observer naïve to particular details of the study [57].
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heterogeneity in outcomes among
studies. Generally, study outcomes
are weighted by the precision with
which the effects are estimated.
Meta-regression is a variant of meta-
analysis in which the effects of
covariates are modeled statistically.
P-hacking: a variety of practices that
increase the odds of finding a
statistically significant result by, for
instance, conducting multiple
versions of an analysis with different
covariates, interactions, or subsets of
data. Some processes that
contribute to P-hacking, such as
conducting multiple versions of an
analysis with different interaction
terms, might be pursued out of a
sincere desire to discover the story
the data have to tell. However, each
additional version of the analysis
increases the risk of a false positive
or of an inflated effect, and unless we
disclose all results from all versions of
analyses and all decisions regarding
data gathering and analyses, we will
contribute to the biased distribution
of effects in the literature.
Preregistration: a process by which
planned studies, including methods
and an analysis plan, are registered in
a secure and accessible platform (e.
g. website such as Open Science
Framework; https://osf.io/) before
commencement of the research.
Once a preregistration has been
submitted, it cannot be altered.
Preregistrations can be embargoed
to protect ideas before publication.
Publication bias: a bias in the
distribution of published effect sizes
resulting from any number of factors,
including selective reporting by
authors and rejection of non-
negative, or absent patterns is a major hindrance to our understanding of the biological world.
First, the absence of an effect or the presence of only a weak effect is itself important as we sort
through explanations of how biological systems work. Second, any observed statistical rela-
tionship is an estimate of a true biological relationship, and, as an estimate, it is inherently
uncertain. Sampling variance results in some estimates being higher than the true value, and
some lower (type M errors), and some being even opposite in sign (type S error) [8]. If we
systematically eliminate the smaller or contradictory effect sizes from publication, we get a
biased picture of the size of the true underlying effect, and under some circumstances this bias
can be extreme [2]. Methods exist for estimating the effect of publication bias in meta-analysis,
but these methods are imperfect because most are indirect–and thus must make major
assumptions about missing unpublished results whose true values we can never know [9].
Therefore, the clearest path towards a reliable average is minimizing bias in the original sample of
statistical effects [2]. The selective reporting behind much publication bias clearly varies among
subdisciplines and with the type of data reported, but evidence suggests it is common in many
areas of ecology and evolution, as in many other scientific disciplines. Most authors of this
manuscript have engaged in selective reporting at one or more points in their pasts, sometimes
at the request of reviewers or editors, and anecdotal evidence from conversations with others
suggest that it could be widespread and frequent. However, it is not only our personal
experience that suggests selective reporting to be common. There is considerable published
empirical evidence for publication bias in ecology and evolutionary biology.

Under-reporting is the easiest form of selective reporting to document because we know the
analysis was completed; the paper merely fails to provide all the details of results or statistical
methods. For instance, studies sometimes include means with no indication of uncertainty
around those means, P values with no indication of the direction of the trend, or statistical results
without the sample size for the particular subset of data examined. These practices all limit
readers’ abilities to build an unbiased understanding of a system, and severely limit the
usefulness of data for meta-analysis. A long and growing list of surveys and meta-analyses
has documented widespread under-reporting across many of our subdisciplines. Studies in
fields including conservation [10], plant ecology [11], behavioral ecology [12], ecosystem
ecology [13,14], community ecology [15], and others [16,17] often find that about half of
published articles lack at least one key piece of information regarding statistical relationships
(Table 1). Further, where it has been examined these under-reported results were more likely to
come from non-significant comparisons or patterns contradictory to the primary hypothesis [18].
Finally, even if authors report statistical results, they often do not report how the analyses were
significant results by editors.
Registered report: a study in which
the rationale, methods, and analysis
plan are submitted to a journal for
review, and possible revision, with
the objective of achieving in-principle
acceptance based on the importance
of the question and the quality of the
study design, not the outcome,
before initiation of the study.
Replication: a study designed to
replicate a previously published
result, either by closely following the
original methods in an effort to
assess validity (‘direct’ or ‘close’
replication) or by designing a study
inspired by the original concept in an
effort to assess generality
(‘conceptual replication’).
Selective reporting: reporting only a
subset of analyses conducted. In

Table 1. A Sample of Studies in Ecology and Evolution that Quantify Rates of Under-Reporting of Important
Details of Methods or Results in the Published Literature

Citation Studies Reviewed Finding

Ferreira et al. [13] 99 studies of litter decomposition in
streams as an effect of nutrient
enrichment

Estimates of decomposition rate presented without
estimate of uncertainty in 54% of studies
(even after requesting details directly from authors)

Fidler et al. [10] 78 articles published in 2005
in Conservation Biology and
Biological Conservation

58% missing at least one effect size
51% missing at least one sample size
85% missing at least one SE or SD

Parker [12] 48 studies of plumage color
in a well-studied European
songbird species

409 of 997 main-effect relationships lacked information
to estimate the strength and/or direction of the effect

Zhang et al. [15] 54 studies of forest
productivity as a function
of tree diversity

29 studies failed to provide either estimates of variance
associated with means or corresponding sample sizes
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medicine, a similar concept is often
referred to as reporting bias.
Statistical power: the probability of
detecting a statistically significant
effect if that effect actually exists. This
probability is a function of the
significance threshold, sample size,
and strength of statistical effect.
Type I error: rejection of a null
hypothesis when the null hypothesis
is true (a ‘false positive’).
Type II error: a failure to reject a null
hypothesis when the null hypothesis
is false (a ‘false negative’).
Type M error: an error in estimating
the magnitude of an effect.
Type S error: an error in estimating
the sign of an effect.
Under-reporting: reporting an
analysis without sufficient details of
analytical methods or results to allow
for interpretation.
conducted in sufficient detail, which makes it impossible for readers to critique the statistical
methodology and to replicate the analyses.

Estimating the rate at which results go completely unreported is more challenging. Results could
remain hidden as a result of comparisons that the authors decided were uninteresting. Unre-
ported results might also come from alternative versions of analyses conducted with, for
instance, different covariates, interactions, or subsets of data, as we might expect from P-
hacking. One proposed method for identifying P-hacking is ‘P-curve’ analysis, which predicts a
clumping of P values slightly below 0.05 if P-hacking is common [5]. Recently, P-curve analysis
was used to argue that P-hacking was having only modest impacts on biology [4]. Regrettably,
this reassuring conclusion is unwarranted. First, when researchers can include or exclude
covariates depending on their effects on P values, P values much smaller than 0.05 can often
be generated in the absence of a real effect [19,20]. Thus, P-curve analysis focused on a 0.05
threshold can dramatically underestimate P-hacking in fields where multiple covariates are
common [19], such as much of ecology and evolutionary biology. In fact, P values have been
shown to clump under lower thresholds (0.01, 0.001, etc.) as well [21], as would be expected if
P-hacking often ended with calculation of a ‘highly significant’ P value. However, the second
problem with these analyses is that assumptions about the expected distribution of a collection
of published values are almost certainly incorrect, and thus inferring bias from the ‘P-curve’ is
untenable under most conditions [22].

There are, however, other ways to estimate the magnitude of selective reporting. We can
compare rates of publication of statistically significant results with the observed distribution
of statistical power and estimates of average strength of effect. Rates of publication of
statistically significant effects are very high. In ‘Environment/Ecology’ and ‘Plant and Animal
Sciences’, 74% of 150 and 78% of 200 statistical tests, each from a different randomly
selected paper, were statistically significant and supported the researchers’ putative a priori
hypotheses [23]. Similarly, in a cross-section of biological journals, many from the disciplines
of ecology and evolution, only 8.6% presented non-significant tests of the main hypothesis
[24]. Part of the explanation for these numbers is likely to be HARKing, in which authors
choose their strongest patterns and build the paper around those results, either de-empha-
sizing or leaving out other results. While in some subfields of ecology and evolution
researchers might often test hypotheses that are likely to be true, this is probably not
the case across all of ecology and evolution. Further, even if most of our hypotheses were to
be true, the proportion of statistically significant results should be much lower because many
of our studies have low statistical power. This low power results from sample sizes that are
often small, and average effect sizes that are also relatively small (jrj = 0.19 [25], which
should actually be an overestimate [26]) and thus difficult to detect (Box 2). The resulting
statistical power to detect effects of this observed average magnitude in the behavior,
ecology, and evolution literature is in the neighborhood of 20% [27,28] (Box 2). If we thus
conclude that typical power is about 20%, and we assume that 74% of tested hypotheses
are true, then we would still expect only 16% of findings to be statistically significant (Box 3)
rather than 74%. This is a strong indication of HARKing and selective reporting. Further, we
discuss evidence below which suggests that published statistically significant results might
often be false or inflated relative to the true effect.

Sources of bias: the proportion of significant results that are false positives is, somewhat
counter-intuitively, increased in studies with small samples and low power [29]. This increase
happens because the probability of detecting a true positive declines as power is reduced, but
the probability of detecting a false positive remains fixed (typically at 0.05). As a consequence a
greater proportion of positives will be false as power decreases (Box 3). This means that reports
of significant findings with low sample size should be disproportionately likely to be incorrect [30],
714 Trends in Ecology & Evolution, September 2016, Vol. 31, No. 9



Box 3. False-Positive Report Probability (FPRP)

In many subfields of evolution and ecology it remains common to use a significance threshold of 5%. This means that if
our null hypothesis were true we would incorrectly reject it 5% of the time. However, we often incorrectly attribute a
frequency of 5% to a different phenomenon: the chance that a significant finding is a false positive. This is incorrect
because the probability that a positive result is a false positive depends on three factors: (i) the proportion of our
hypotheses that are in fact true (p, the probability that a hypothesis is true), (ii) the significance threshold (/), and (iii)
statistical power (1 � b, where b is the probability of making a type II error; Table I): FPRP = (/(1 � p)/[/(1 � p) + (1 � b)
p]. With 50% of our hypotheses true and statistical power of 20% (a power typical in ecology and evolution [25]), the
chance that a significant finding is a false positive is 20%. This value is known as the false positive report probability [58].
This number is notably larger than 5%, but it becomes dramatically larger when, in pursuit of novelty, we turn our interest
towards testing relatively unlikely hypotheses, those that in the Bayesian sense could be said to have a low prior
probability. For instance, when only 10% of tested hypotheses are in fact true, the expected false-positive report
probability rises to 69%: 0.05(1 � 0.1)/{0.05(1 � 0.1) + (0.2)0.1} [58]! In fact, false positives could be even more
prevalent. The above calculations assume complete and transparent reporting of the full set of analyses conducted,
as promoted by preregistration and other recently proposed transparency tools. If, by contrast, researchers make their
choices of analysis strategy conditional on the outcome as with P-hacking (i.e., preferring test variants that yield
significance or stronger effects), then the false-report probability increases further.

Table I. Four Possible Outcomes from a Null-Hypothesis Statistical Test Together with the Probabilities of
Each Outcome Depending on Whether the Null-Hypothesis is True

Null Hypothesis True Alternate Hypothesis True

Significant Finding False Positive: / True Positive: 1 � b

Non-Significant Finding True Negative: 1 � / False Negative: b

Box 2. Evidence of Low Power

In a sample of 1362 statistical tests from 697 papers published in 2000 in 10 behavior, evolution, and ecology journals,
the average power to detect a small effect (jrj = 0.1) was only 13–16% [27]. In other words, studies would only be
expected to reject a false null-hypothesis 13–16% of the time in the case of weak effects. Power to detect medium
(jrj = 0.3) and large (jrj = 0.5) effects, although of course higher (40–47% and 65–72%, respectively), was still typically
well below the commonly recommended threshold of 80%. Examined another way, the proportion of studies reaching
this 80% power threshold to detect weak effects was 2–3%, 13–21% for medium effects, and 37–50% for strong effects
[27]. Other analyses of power find similar results. For example, an analysis of studies published in Animal Behaviour in
1996, 2003, and 2009 found, across all 3 years, an average power of only 23–26% for detection of medium effects and
1–2% for weak effects [28]. It thus appears that studies in ecology and evolution often lack power to detect small and
medium effects, and this is particularly problematic because effects in ecology and evolution tend to be weak. Average
effects across 43 meta-analyses in ecology and evolutionary biology were found to be weak to moderate (jrj = 0.18–0.19)
[25]. Further, these somewhat low effect size values are actually overestimates because averages of estimated absolute
values of effect size are upwardly biased [26]. To detect these relatively small effects requires large samples (e.g., n = 207
to obtain an 80% probability of detecting a true effect of r = 0.193) [25], but obtaining sufficient power through large
samples is rare [27].
and of course such underpowered studies are common in much of ecology and evolutionary
biology [27].

Insufficient statistical power also hinders detection of real effects, and type II errors should thus
also be common in ecology and evolution [31]. In fact, we predict that type II error, when they
occur, will often go hand and hand with type I error because P-hacking extracts false positives
from data while true relationships go undetected. As described above, the rarity of negative
results in the literature suggests that type II error is often concealed by HARKing, selective
reporting, or both.

Much of our focus in this paper is on null-hypothesis tests because these tests remain the most
common type of statistical analyses in ecology and evolution. However, it is important to note
that most of the choices related to sample size and selective reporting that can bias null-
hypothesis tests can bias other threshold tests (e.g., Akaike information criterion: DAIC = >2
[32]) and can also generate misleading and inflated effect sizes. For instance, large effects
Trends in Ecology & Evolution, September 2016, Vol. 31, No. 9 715



reported from studies with small samples are likely to often be inflated, or even of the wrong sign
[30]. Examination of 3867 ecological studies from 52 previously published meta-analyses
showed that studies with the largest effect sizes tended to have the lowest samples sizes
[33]. Further, P-hacking could also be considered to be ‘effect-size hacking’ because the same
practices produce inflated effect sizes, and if combined with selective reporting, produce a
distribution of published effects that is biased upwards.

Given that studies with larger effects could be more likely to end up in journals with higher impact
scores [34], perhaps high-impact journals are often publishing studies with large effects despite
their small samples and unreliability. Although there is evidence that in some subsets of the
published literature sample size and journal impact factor are negatively correlated, this trend
appears to vary across study types, and, when averaged across a large number of studies
(n = 3867), impact factor was uncorrelated with sample size [33]. While this lack of correlation is
certainly better than a consistent negative correlation, given that studies with larger samples
produce more reliable results, it would actually be preferable to see a positive relationship
between sample size and journal impact factor. Further, it is effect size, not sample size, that
predicts the number of citations a study receives [33]. Thus, not only are published studies with
small sample sizes more likely to report inflated effects (i.e., more prone to type M errors) but the
unreliability of these studies also does not dependably deter their publication in high-impact
journals or their accumulation of citations.

It has long been established that, as the number of statistical comparisons increases, the
probability of observing patterns that result only from chance (i.e., false positives) also
increases [35]. This happens both with multiple separate tests or if, instead of alternative
tests, we combine multiple possible predictors in the same model [36]. Within a single model
we might include a set of different equally-plausible predictors of the variable of interest, or
we might include multiple alternative interaction terms between our predictor of interest and
different covariates. In a survey of 50 randomly selected studies from ecology and evolution,
28 studies (56%) used generalized linear models (GLMs) with two or more predictors [36],
and none of these 28 considered any type of correction for multiple comparisons to counter
the risk of inflated significance. We could not locate other attempts to quantify failures to
correct for multiple comparisons, but uncorrected multiple comparisons appear to be
common in at least some portions of the literature [12]. Although false positives from multiple
comparisons in exploratory analyses need not be a major problem if we recognize the
provisional nature of the results [35], two current practices in our disciplines make uncor-
rected multiple comparisons a severe issue. First, multiple comparisons are often hidden,
with researchers conducting multiple tests but only reporting a subset of them. Thus the
likelihood that a result is a false positive is concealed and the scientific community is misled
about the probability that the result is true. Second, calls for tolerating a high false positive
rate (to reduce type II errors) emphasize the importance of validating findings with replication
studies [35], but replications or other types of independent evaluation are currently far too
rare to sort out the false from the true positives [37,38].

The role of institutions: the problems outlined above are heavily influenced by the institutions that
shape the decisions of researchers, including journals, funding bodies, and employers. Calls for
individual scientists to improve transparency are not uncommon (e.g., [39–41]), and scientists
sometimes respond to these calls. However, individual scientists, like all people, make decisions
in response to the institutions in which they operate [1]. Funders reward novelty, typically to the
exclusion of replication, and journals preferentially publish statistically significant findings, espe-
cially if those findings are surprising. These factors alone would influence researchers’ decisions,
but these incentives are even more influential because universities and research institutes often
hire and promote scientists based on their record of acquiring grant money and the number and
716 Trends in Ecology & Evolution, September 2016, Vol. 31, No. 9



impact factors of their publications [1]. Thus, to increase transparency, we should identify
components of this incentive structure that are amenable to improvement.

Some Solutions To Improve Transparency
There is growing recognition of the problems hindering empirical progress and of the role that
institutions must play in shaping science in ecology, evolutionary biology, and beyond [42–44]. In
November 2015, representatives (mostly editors-in-chief) from nearly 30 journals in ecology and
evolution joined funding-agency panelists and other researchers to identify ways to improve
transparency in these disciplines. At this workshop, strong support emerged for the recently
introduced Transparency and Openness Promotion (TOP) framework (https://cos.io/top/) [45].
TOP currently consists of eight guidelines that can be implemented by journals and funding
agencies. Institutions can adopt whichever of the eight guidelines they choose, and they can
implement these guidelines along a gradient of stringency. The rapid and extensive spread of
support for TOP (>500 journals in <1 year) across scientific disciplines appears to herald a
revolution in transparency standards.

Several TOP guidelines simply request or require more-thorough reporting of methods, results,
data, or analysis code. Ecologists and evolutionary biologists made important progress in this
regard several years ago when a growing number of journals began requiring the archiving of
data [46]. Calls for more-expanded archiving are growing in ecology and evolution [47], and the
TOP guidelines can facilitate the expansion of these types of disclosures. Interestingly, an
incentive to archive in the form of a badge appears similarly effective [48] to requiring archiving
[49], and could therefore eliminate much of the controversy regarding archiving (e.g., [50]).
However, challenges remain, such as ensuring inclusion of sufficient metadata [49]. The TOP
guideline titled ‘analysis and design transparency’ calls for discipline-specific guidance regarding
what information should be disclosed in publications, and, to that end, the workshop produced a
document ‘Tools for Transparency in Ecology and Evolution’ (TTEE; https://osf.io/g65cb/) that
provides checklist questions that journals can provide to authors, reviewers, and editors to
facilitate transparent reporting. Promoting more-thorough and consistent reporting of results
and methods through TOP and TTEE should dramatically improve transparency, but here we
also highlight two other TOP components that could have transformative impacts on our field.

Preregistration, in which researchers register their study and data analysis plan before
collecting data, can greatly improve transparency. Although requiring preregistration (as in
clinical trial research) [51] might thwart publication of valuable exploratory and serendipitous
findings, encouraging preregistration where appropriate has large potential benefits. Most
obviously, it makes unpublished results more discoverable [45], thus helping to reduce publi-
cation bias. Potentially more important, however, preregistration of analysis plans ensures that
we can identify genuine a priori planned tests, helping to improve confidence in results because
they are unlikely to derive from hidden multiple hypothesis testing and selective reporting. As
preregistration becomes more common, results that do not come from preregistered analysis
plans become viewed as exploratory, and thus provisional and less convincing than prereg-
istered results [52], providing a strong incentive to preregister studies. We acknowledge that
exploratory work is hugely important in ecology and evolutionary biology and we do not wish to
impede it, but it should be more consistently identifiable and it should be followed-up with
planned, ideally preregistered, tests [35]. A common concern is that preregistration ignores the
inevitable tweaking of methods that occurs as field projects evolve. However, alterations to
methods or analysis plans can be justified in the published study (e.g., [48]). Reviewers and
editors can decide if the reported methods and analyses adhered closely enough to the
preregistration to earn a preregistration badge (https://osf.io/tvyxz/wiki/home/). Further, pre-
registered analyses and exploratory results can be published in the same paper when the
distinction between them is made clear. In an effort to further jump-start the preregistration
Trends in Ecology & Evolution, September 2016, Vol. 31, No. 9 717
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process, the Center for Open Science recently announced the Preregistration Challenge, in
which the first thousand researchers to publish preregistered research will be awarded US
$1000 each (https://cos.io/prereg/). Independently, institutions promoting systematic reviews in
ecology and conservation have also been encouraging preregistration (www.
environmentalevidence.org/; http://cebc.bangor.ac.uk/).

The final TOP guideline promotes replications of previously published studies. Replication to
assess validity and generality of prior results is a core practice of science. Exact replication is not
possible, especially in field studies, but various forms of replication, especially when combined
with meta-analysis, are powerful tools for establishing the applicability of hypotheses [37].
Unfortunately, institutional incentive structures often work strongly against replication in ecol-
ogy and evolution, especially replications that seek to closely match methods as part of the
process of assessing validity [37]. Journals and funding bodies explicitly favor novelty. Of
course progress requires novelty, but progress also requires rigorous evaluation of prior
findings. Not all studies are of high priority for replication. The more interesting or important
a finding, however, the more important it is to replicate that study. Allocating funding to
replication would certainly increase its frequency, as would journals adopting policies that
explicitly encourage submission of replications (e.g., http://biotropica.org/
reproducibility-repeatability/). As with any other articles, journals can reject less-valuable
replication studies. For instance, journals might require sample sizes larger than in the original
study, review of methods before conducting the research (i.e., registered reports) [53], or
replications only of original studies that cross some threshold of impact or interest. Replication
is an essential part of doing science in other fields, as, for example, anyone who remembers the
‘cold fusion in a jar’ debacle of 1989 can attest [54].

As institutions in ecology and evolutionary biology more vigorously promote transparency, we
will become better able to evaluate the results we read, the average result will be more reliable,
and there will be clearer paths for empirical progress (Figure 1). We need to deliberately shape
the institutions in which we operate to best facilitate scientific progress. Not all institutions will be
equally responsive to attempts at reform. However, we already know that journals can take
deliberate steps to increase transparency [46], and in response to the TTEE workshop men-
tioned above, nearly 30 ecology and evolution journals are engaged in ongoing discussions
about adopting TOP guidelines or have already adopted these guidelines. Funding agencies
have also implemented data-archiving policies [46] and could promote transparency in multiple
other ways as guided by TOP. The proposals we review here are only a subset of possible
solutions to insufficient transparency. We hope to stimulate a continuing exploration of these
issues. This is an historic crossroads for the practice of science in ecology and evolutionary
biology, and for empirical disciplines in general [45].
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