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Summary. The effect of sample size and species diversity on a 
variety of similarity indices is explored. Real values of a 
similarity index must be evaluated relative to the expected 
maximum value of that index, which is the value obtained for 
samples randomly drawn from the same universe, with the 
diversity and sample sizes of the real samples. It is shown 
that these expected maxima differ from the theoretical ma- 
xima, the values obtained for two identical samples, and that 
the relationship between expected and theoretical maxima 
depends on sample size and on species diversity in all cases, 
without exception, In all cases but one (the Morisita index) 
the expected maxima depend strongly to fairly strongly on 
sample size and diversity. For some of the more useful indices 
empirical equations are given to calculate the expected maxi- 
mum value of the indices to which the observed values can be 
related at any combination of sample sizes. It is recom- 
mended that the Morisita index be used whenever possible to 
avoid the complex dealings with effects of sample size and 
diversity; however, when previous logarithmic transformation 
of the data is required, which often may be the case, the 
Morisita-Horn or the Renkonen indices are recommended. 

1. Introduction 

It is often desirable to make comparisons between faunal or 
floral samples taken at different times, in different places, or 
by different techniques, whether by the investigator, by pre- 
dators or by herbivores. In making such comparisons it seems 
profitable to take advantage of the existence of similarity 
indices, many of which have been developed in this century. 
Some of these indices merely take into account the presence 
or absence of species in the samples while others incorporate 
information on the relative abundance of the species. The 
preferable index in a given case depends on the questions 
asked and the kind of data available. However, it is known 
that at least some of the indices depend on sample size 
(Williams 1949; Mountford 1962; Morisita 1959), while the 
diversity of the samples may also have an effect (Williams 
1949). Huhta (1979) tested a long series of similarity indices 
using real data and found that the results depend largely on 
the index chosen, which suggests the dangerous possibility 
that one can choose an index to demonstrate whatever one 
wants the data to show, without necessarily being able to 
prove that this is indeed what they do show. Thus, careful 
evaluation fo the various coefficients is essential. 

To interpret a given value of a similarity index one must 
compare it with its maximum value. As that maximum value, 
one usually takes the theoretical maximum value, which is the 
value obtained when comparing two identical samples. That 
value usually is one. However, this does not seem to be a 
very useful procedure. When comparing two samples one 
wants to test the null hypothesis that they are random sam- 
ples from the same fauna against the alternative hypothesis 
that they are samples from different faunas. The expected 
maximum value of the similarity index should, therefore, be 
the value of that index for two random samples from the 
same fauna. This value, as will be shown, can be very dif- 
ferent from the theoretical maximum value. 

This paper examines the effects of sample size and diver- 
sity on the expected maximum values of a number of simi- 
larity indices, using computer-generated samples taken fi'om 
insect faunas that are distributed according to the log series 
with four different diversities (Fisher et al., 1943). Included in 
the analysis are indices known to be dependent on sample 
size to evaluate the extent and effect of that influence and to 
explore the possibility of taking it into account. Also included 
are indices that have been claimed to be almost independent 
of sample size (Mountford 1962; Morisita 1959; Horn 
1966). 

It will be shown that the expected maximum of all indices 
but one are rather strongly affected by sample size and diver- 
sity. In some indices this influence is greater than in others 
and an attempt will be made to deal with these influences. 

2. Materials and Methods 

Simulation experiments were carried out on an Infotek-improved 
HP-9830 desk computer. Four hypothetical faunas, distributed ac- 
cording to the log series, were specified. In the log series distribution 
the relation between the number of individuals and the number of 
species is given by: 

where S is the number of species, N the number of individuals and c~ 
the diversity coefficient. Each fauna from which the samples were to 
be drawn had 100,000 individuals and the number of species varied 
from 150 (e= 17.3), 380 (~=50.0), 580 (c~=81.5) to 750 (a= 110.1). The 
highest diversity used here is slightly less than that observed in a 
sample of Homoptera collected over four years of light-trapping in 
the tropical forest on Barro Colorado Island, Panama (Wolda, in 
press 198l) and is therefore feasible. 
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Random samples were taken from each of these four faunas 
without replacement; they were of five different sizes (100, 200, 500, 
1,000 and 5,000 individuals) with five replicates for each of the four 
smallest sample sizes and two replicates for size 5,000. (A copy of the 
computerprogram used to draw random samples out of a specified 
fauna, which is distributed according to the log series, can be ob- 
tained on request.) 

For each diversity, similarity indices were calculated between all 
possible pairs of samples, and mean and standard deviation of the 
indices were calculated for each combination of sample sizes. 

In the similarity indices included in this study: 

a = the number of species in sample 1 
b = the number of species in sample 2 
c = the number of species in common between 1 and 2 
d = the number of species absent in both 1 and 2 
k = the number of species in 1 and 2 combined = a + b - c. 

l~jl = the number of individuals of species i in sample j 
Nj = the number of individuals in sample j 
pj~ = the proportion of species i in sample j = nfflV~ 

A number of binary coefficients are used when the number of species 
absent in both samples can be specified. Of these I have selected only 
one example: 

1) Baroni-Urbani and Buser (1976) 

1/m+c s~ / 

Of the other binary coefficients where the number of species absent in 
both samples to be compared need not be known, I have selected 
three examples: 

2) Czekanowski (1913), better known as Sorensen (1948) 

2c 
( 2 S = - - .  

a+b 

3) Mountford (1962) 

2c 
I 

2ab - (a + b) c 

4) Association index, Dice (1945) 

c 
M = - -  

rain(a, b) 

For a survey of other binary indices see Clifford and Stephenson 
(1975) and Cheetham and Hazel (1969). 
I have selected several of the coefficients that take into account the 
relative abundance of the species: 

5) Bray and Curtis (1957) 

1 - B C : I  ~lnli-n21[ 

6) Bray and Curtis (1957) after logarithmic transformation of the 
data [ln(nu+ 1)]. Same formula as (5). 

7) Canberra metric (Lance and Williams 1976) 

I-CM:I-~Z I.l~-~2~L. 
k ( n i l + n 2 1 )  

Double zero records are ignored. When one element in a pair equals 
zero there can be a problem (Clifford and Stephenson 1975, p. 58) so 
that the zero in such cases is replaced by 0.2. The index is also 
calculated without this replacement. 

8) Canberra metric after logarithmic transformation of the data 
[ln(njl + 1)]. Same formula as in (7). 

9) Squared Euclidian distance (Clifford and Stephenson 1975, p. 65) 

l --D2= 1 --~(pll--p2i) 2. 
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10) Squared Euclidian distance after logarithmic transformation of 
the data [ln(nji+ 1)]. Formula as in (9). 

11) Percentage similarity (Renkonen 1938) 

PS = ~ min(pl i , P2 i). 

12) Percentage similarity after logarithmic transformation of the data 
[ln(n2i+ 1)1. Formula as in (11). 

13) Morisita index (Morisita, 1959) 

2 ~ i~1it~2i C'l--(~1-k~'2) Xl N2' where 2. y~ nji(nji- 1) 
' N ( N - 1 )  " 

14) Simplified Morisita index (Horn 1966) 

C A as in (13) except .~]=~r~ i 
�9 Nj  " 

15) Simplified Morisita index after logarithmic transformation of the 
data [ln(nji+ 1)]. Formula as in (14)�9 

16) Index of overlap (Horn, 1966) 

U'm.~- H;.~ 
Ro - H ,  x_  H,in 

where H' is the Shannon-Weaver diversity index�9 

17) Product-moment correlation coefficient. See any book on statis- 
tics for the formula. 

18) Product-moment correlation coefficient after logarithmic trans- 
formation of the data [ln(nji+ 1)]. 

19) Kendall rank correlation coefficient. For methods of calculation 
see Ghent (1963; 1972) or any book on statistics. 

20) Kendall rank correlation coefficient with ~ ( P + Q )  in the de- 
nominator (Ghent 1972). 

21) Annual variability, including only data pairs with both n3~>4 
(Wolda 1978). 

A V= Var(log n 2 i /ni i) 

22) Annual variability for all nj~ values (Wolda 1978). Same formula 
as in (21)�9 

Results 

One useful proper ty  of a similari ty index is tha t  it increases 
l inearly from some fixed m i n i m u m  to some fixed, finite maxi-  
mum.  As a cri terion I have  used two samples of 100 species 
each, each species represented by only one individual�9 I va- 
ried the n u m b e r  of species bo th  samples have  in c o m m o n  (c) 
and  calculated the values of the var ious indices�9 As c in- 
creases f rom zero to 100, mos t  indices increase l inearly from 
zero to their  theoret ical  m a x i m u m  of one (Fig. 1), bu t  this is 
no t  t rue for all indices. The  Squared Eucl idian Dis tance  
(SED) invar iably  has a very h igh value�9 Even when  the two 
samples are completely different, i.e. c = 0 ,  this index is 0.98. 
For  this reason  this index is no t  very useful when  compar ing  
two different faunal  samples and  will be discussed no further�9 

Mount fo rd ' s  index (I) remains  at  low values over a b road  
range of values of c, then sharply increases at  h igh values of c 
to reach 0.99 at c = 9 9 ,  and  shoots  up to infinity when  c=100 .  
This does not  argue in favour of the M o u n t f o r d  index. 

The p roduc t -momen t  corre la t ion  coefficient does increase 
l inearly with increasing c, bu t  from - 1  to zero instead of 
from zero to + 1. Moreover ,  when  the  n u m b e r  of individuals  
is no t  the same in all species these limits change to - 1  to 
+ 1. In o ther  words, the theoret ical  limits of the corre la t ion 
coefficient are no t  fixed but  depend on  the k ind of samples at 
hand,  which does not  make  it a t t ract ive  as a similari ty index. 
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Fig. 1. Linearity of similarity indices. Two samples of 100 species 
each are compared, each species with one individual. The number of 
species in common (c) is plotted along the abscissa, the value of the 
indices along the ordinate 

The Kendall  rank correlation coefficient also varies in the 
above example (Fig. 1) between - 1  at c = 0  and zero at c 
= 100, but because of the large number  of ties the coefficient 
is indeterminate at intermediate values of c unless the species 
are ordered in a fixed way and it is known which species are 
present in each sample. 

The Canberra  metric does increase from zero to one as c 
increases from zero to 100, but in a non-linear manner. A 
similar test was done for the Annual  Variability (AV) mea- 
sure. Again two samples of 100 species each were compared, 
but the number  of individuals in each species was taken as 5. 
The resulting curve was convex with its maximum value at c 
= 0, i.e. when both samples are completely different. 

All other indices increase linearly between zero and one 
as c increases from zero to 100, which seems to give them an 
advantage over the indices in which this is not  the case. 
However,  it is not the theoretical maximum to which one 
should relate a given index, but the expected maximum under 
the null hypothesis that the two samples are random samples 
from the same fauna. The computer-generated faunal samples 
were used to explore the behaviour of various similarity in- 
dices and the effects of sample size and species diversity. 

The diversity of the faunas from which the samples were 
drawn was specified, but since this is usually an unknown 
quantity, one has to estimate the diversity from the samples 
at hand. As expected, diversity coefficients such as the Shan- 
non-Weaver index H '  varied with sample size; however, in the 
log series distribution the coefficient ~ is presumed independent 
of sample size. This was tested using the samples present and 
the result are given in Table 1. The diversity of the samples 
was found to be that of the source fauna, with no effect of  
sample size. There is, of course, an effect on the variance so 
that the sample estimate of  c~ becomes less reliable the smaller 
the sample. 

Within each fauna, similarity indices were calculated for 
all possible combinations of samples, which gave a total of 
231 values for each index. For  each combinat ion of sample 
sizes a mean value was calculated for each index. These 
means are based on one value for the combinat ion of sample 
sizes 5,000x5,000, and on 10 values for all other combi- 

Table 1. The relation between sample size and the e-diversity in 
random samples taken from a log series distribution 

Sample N c~-diversity 
size 

Mean SD Range 

Expected diversity 17.31: 

5,000 2 17.82 0.148 17.71- 17.92 
1,000 5 17.61 1.870 13.99- 18.78 

500 5 16.90 0.844 16.16- 18.22 
200 5 18.96 3.277 15.61- 23.55 
100 5 18.20 1.293 17.18- 20.35 

Expected diversity 50.0: 

5,000 2 48.56 0.962 47.88- 49.24 
1,000 5 50.49 2.739 46.13- 52.31 

500 5 49.50 4.798 44.85- 57.05 
200 5 47.43 5.145 43.58- 51.91 
100 5 48.45 7.839 36.26- 55.04 

Expected diversity 81.54: 

5,000 2 81.73 3.825 79.02- 84.43 
1,000 5 85.36 3.664 79.27- 88.44 

500 5 81.52 10.243 72.65- 97.75 
200 5 81.28 11 .451  70.83-100.32 
100 5 74.69 12.215 60.42- 88.72 

Expected diversity 110.1: 

5,000 2 114.85 2.475 113.1 -116.6 
1,000 5 114.56 4.318 109.1 -120.7 

500 5 110.80 11.929 92.7 -126.0 
200 5 113.26 10.267 105.1 - 126.7 
100 5 114.0 24.557 88.9 -154.5 

nations with 5,000 and for all combinations not including 
5,000, where the two samples are equal in size. For  all other 
combinations of sample sizes, i.e. the combinations where the 
two sample sizes are different and do not include 5,000, there 
are 25 values. For  the smallest and largest diversities tested (c~ 
=17.31 and c~=ll0.1) the results are plotted in Fig. 2. The 
figures for the intermediate diversities are not shown here (c~ 
=50.0 and e=81.54), but are intermediate between these two 
extremes. 

The expected maxima of the similarity indices tested (re- 
sults given in Fig. 2) are invariably strongly dependent on 
sample size, to the extent that this effect cannot be ignored, 
and the effect increases with faunal diversity. Apart  from both 
Annual  Variability measures (21 and 22), which have an er- 
ratic relation between sample size and the index, the re- 
lationships found fall into two broad types. In one type the 
effects of the smallest (S) and the largest (L) samples are 
additive in the sense that an increase in either one of them 
causes an increase in the value of the index (e.g. indices 11, 14, 
16, 17, 18, 19 and 20). The other type of relationship shows 
an increase in the value of the index with an increase in S, 
but a decrease with an increase in L (most other indices in 
Fig. 2). In the latter type it is the ratio between the two 
sample sizes that is important.  This difference is important  
since in the former type, the one in which the effects of S and 
L are additive, one can confidently extrapolate to index values 
at larger sample sizes, while in the latter this would not be 
possible if the sample sizes were very different. For  two 
random samples from the same fauna, one of 5,000,000 and one 
of 5,000 individuals, one could predict that Renkonen's  PS 
(11) value would be near unity, but one could not  make such 
a prediction for the Bray-Curtis (5) index. 
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Fig. 2. The value of the expected maximum value of a number of similarity indices as a function of the size of the smaller sample (S, plotted 
along the abscissa) and the larger sample (L). Plots for samples with the same L are connected by a line. The longest line refers to L = 5,000, the 
next longest line to L =  1,000, etc. At L =  100 there is only one point. The indices are indicated by their symbol and by the same number used in 
Materials and Methods where these indices are described. For each index the graph on the left refers to samples from a very diverse fauna (c~ 
= 110.1) and the one on the right to a much less diverse fauna (c~= 17.3) 
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Table 2. Equations approximating the relation between the maximum values of some similarity indices and 
sample size, i.e. the number of individuals in the smaller (S) and the larger (L) of the two samples compared. 
The goodness of fit, i.e. the relation between the simulation results given in Fig. 1 and the results using these 
equations is given as r 2 (in percentages) 

Index Alpha Regression equation 100- r 2 
Diversity 

1. Baroni-Urbani and Buser 1 7 . 3 1  S0=1.190-1.563 S-~ - 10-7L 92.6 
50.0 S O = 1.190- 2.108 S-  0.301 _ 389-10 - 7 L 87.7 
81.54 S O = 1.208 - 2.204 S - 0.288 _ 432.10- 7 L 86.5 

110.1 S o = 1.213 -2.651 S -~ -438 .10 -  7 L 90.2 

17.31 QS= 1.148-2.146 S-~ �9 10-7L 96.1 
50.0 QS = 1.130 - 3.292 S-  0.364 _ 264.10- v L 84.2 
8 1 . 5 4  QS=1.137-3.375 S ~ 95.2 

110.1 QS= 1.125-4.170 S -~ -251-10-TL 97.4 

17 .31  M=0.592-0.02561n S+0.06321n L 87.8 
5 0 . 0  M=0.340-0.03721n S+0.10201n L 90.3 
81.54 M = 0.254 - 0.0426 In S + 0.1153 In L 90.0 

1 1 0 . 1  M=0.020-0.0348 In S+0.13771n L 92.5 

17.31 P S =  1 - 1.642 S -~176 - 4.282 L -~ 99.0 
50.0 P S =  1-2.410 S-~ Z -0"719 99.1 
81.54 P S =  1-2.810 S -0"375 -0.645 L -~ 99.0 

1 1 0 . 1  PS=I -3 .111  S ~ Z -0"470 98.7 

17.31 PSln = 1.121 --2.827 S - ~  . 10 - 7  L 98.0 
50.0 PSI~ ~ = 1.109 - 3.507 S -~ - 222.10- 7 L 96.7 
81.54 P S I n =  1 . 0 9 9 - 4 . 2 4 0  S - 0 " 3 9 3 - 1 9 8 . 1 0  - 7  L 97.5 

110.1 PSIn s -4.088 S -0"379 -- 197.10 - 7  L 98.4 

17.31 6 ' a = 1 -  3.663 S-~ L -1"~176 97.8 
50.0 C a = l -  8.761 S-~176 1"~176 99.8 
81.54 (~ = 1 - 10.651 S -~ - 10.668 L -~ 99.3 

110.1 t 2 ~ = l -  9.425 S -~  5.959 L -~ 99.0 

17 .31  C'xin=l.096 - 5.538 S-~176 ' 10 7 L 95.6 
50.0 C'xI,,= 1.070- 9.434 S -~ - 144" 10 - 7  t 95.2 
81.54 (~zl,= 1.039- 9.414 S - ~  77.10 7 L 95.8 

1 1 0 . 1  (~ln-1.071-10.520 S ~ -7 L 96.5 

17.31 Ro= 1-1.247 S -~ L -~ 98.1 
50.0 R o = 1 - 1.799 S -~ Z -0"772 98.7 
81.54 R o = 1 - 1.802 S -~ - 5.825 Z -0 '639  98.8 

110.1 R o = 1-2.556 S-~ L -0"646 97.9 

2. Czekanowski (Sorensen) 

4. Association index, Dice 

11. Renkonen 

12. Renkonen (log) 

14. Morisita-Horn 

15. Morisita-Horn (log) 

16. Overlap, Horn 

Both the product-moment  correlation coefficient and the Ken- 
dall rank correlation coefficient (17, 18, 19, 20) show a strong 
effect of sample size, to the extent that  the expected maxi- 
m u m  values can be negative at higher diversities, which 
makes them unpleasant  to work with. The effects of sample 
size on the Bray-Curtis index (5, 6) and the Canberra  metric 
(7, 8) is also excessive. In the binary indices the Mount ford  
index (3) has such low expected max imum values (note the 
scale of the ordinate) that  it is also almost  useless. 

The Morisi ta  index (Morisita 1959), is not  included in Fig. 
2. Morisi ta  performed simulation experiments not  unlike the 
more  detailed and extensive ones presented here and con- 
cluded that  his index 'is almost uninfluenced by the sizes of 
N 1 and N 2 unless either or both  of N 1 and N 2 are small.' This 
index has been criticized for having a maximum not  equal to 
one, but  of ' abou t  one '  (Horn 1966). In fact, the theoretical 
max imum of the index is always larger than one and is 
strongly dependent  on sample size (Fig. 3). This theoretical 
maximum can only be calculated for two samples of equal 
size and, therefore, is unknown for combinat ions  of samples 
of different sizes. However,  the expected max imum values are 
' about  one '  and are independent  of sample size, which con- 

firms Morisi ta 's  results. The actual value of the expected 
maximum is not  exactly unity and may even tend to be a 
little above one, but it should be close enough to one so that  
this index can be used without corrections for effects of sam- 
ple size. The uncertainties in not  having a fixed upper limit 
for the index equal to one are outweighed by the problems of 
correcting the other indices for effects of sample size and 
diversity. 

In spite of the obvious advantage of the Morisi ta  index, it 
may be desirable to use some other index. For  instance, if the 
data need to be t ransformed to logari thms before using an 
index or if a binary index is required, the values observed 
should be related to the expected maximum of that  index at 
the observed diversity and sample sizes. That  expected maxi- 
m u m  can be calculated by simulating a number  of samples of 
the desired sizes and diversity with a computer.  This pro- 
cedure is, however, very laborious and the information con- 
tained in Fig. 2 can be used to estimate the expected maxi- 
m u m  of the index concerned. The more  useful indices were 
selected and an equat ion was fitted to the data expressing the 
index as a function of the smallest (S) and largest (L) sample 
size. The results are given Table 2 together with the goodness 
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and the Morisita-Horn index on the right. For each larger sample 
size (L) there is a graph and within each graph a line for each smaller 
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of fit (r 2) of the equations to the data of Fig. 2. For the non- 
binary indices the fit is good to superb and for the binary 
indices reasonable to good. Several types of regressions were 
tried and the ones given gave the best fit. 

As shown for two selected indices in Fig. 4, the relation 

between diversity and the effect of sample size is not com- 
plicated, and linear intrapolation between two adjacent diver- 
sities covered in Table 2 should cause no problem. The same 
holds for the other indices. One can, therefore, determine the 
expected maximum at the two diversities adjacent to the 
diversity of the samples and intrapolate. 

D i s c u s s i o n  

The Baroni-Urbani and Buser index requires that the number 
of species absent in both samples be known, which makes it 
normally impractical. However, if such extra information is 
available, such as in the present simulation experiments, it 
does not improve the effect of sample size on the index. 

The difference between the Czekanowski (Sorensen) index 
QS and the association index (Dice) M is considerable, For 
example, if there are two samples, one with 150 and the other 
with 30 species and they have 30 species in common, M is 
1 but QS only 0.333. In the Czekanowski index the value of 
c, the number of species both samples have in common, is 
compared with the total number of species in both samples 
and in the association index, with the number of species in 
the smallest sample only. If, therefore, there is reason to believe 
that the difference between the two samples is completely or 
largely due to differences in sample size, the association index 
might be preferred. If, however, there is reason to believe that 
the difference between the samples is not due to differences in 
sample size but is real, one may find the Czekanowski index 
more useful. 

The fit of the equations for the binary indices in Table 2 is 
not perfect, so another index might be preferred. In many 
cases, however, binary indices are the only ones that can be 
used as no information on the relative abundance of the 
species is available. One often has only lists of species to 
compare. In such cases the interpretation of the (binary) simi- 
larity index is difficult as no correction for sample size is 
possible and no estimate of alpha diversity can be obtained. 

Among the non-binary indices the Morisita index has a 
major advantage in that it is independent of sample size and 
diversity, except possibly for very low sample sizes (Morisita 
1959), but then sampling error will be such that a similarity 
index may not convey much information anyway. If other indices 
are preferred, one can consider Renkonen's PS with or without 
previous logarithmic transformation of the data, the Morisita- 
Horn index with or without a previous logarithmic transfor- 
mation, and the Horn index of overlap. The equations in 
Table 2 help to evaluate the indices found within the range of 
sample sizes and diversities used in this paper. 

Extrapolation of the present results to larger sample sizes 
is no problem with Renkonen's index, the Morisita-Horn 
index, and the Horn overlap index, provided the data are not 
previously transformed to logarithms. Extrapolation with 
such transformation is possible if both sample sizes are large, 
but if one is much smaller than the other this should be 
discouraged until the effects of sample size at those larger 
sizes have been established through simulation experiments. 
Extrapolation to smaller sample sizes should also be avoided. 
If the samples are smaller than 100, there is no point in 
calculating a similarity index because sampling error makes 
the results meaningless unless the diversity of the samples is 
very low. 

In all experiments reported in the present paper, the sam- 
ples compared were drawn from faunas with the same diver- 
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sity; no comparisons have been made of samples with dif- 
ferent diversities. However,  such differences are not  uncom- 
mon. To deal with those samples, the average diversity of the 
two samples may be used in calculations. The results should 
be acceptable unless, perhaps, the difference in diversity between 
the two samples is very large. 

In all simulations the faunas were assumed to be distribut- 
ed according to the log series. Field samples may differ from 
this distribution (Wolda and Fisk in preparation), but this 
deviation should not affect the results greatly. With data which 
are very different from a log series, care should be taken in 
applying the present results. However,  the distribution in 
most cases should be close enough to a log series to enable 
one to use the present results as an approximation.  

In field samples a positive correlation has sometimes been 
observed between the value of a similarity index and the 
number  of individuals in the samples. In his study on the 
seasonal occurrence of coprophagous beetles Hanski  (1980) 
found such a correlation for the Renkonen's  index and 
suggested various interesting biological consequences of this 
correlation. He also mentioned the 'possibility of an artefact '  
and indeed this correlation is an inherent property of this index 
and does not warrant any biological conclusions. 

Morisi ta  (1959) showed that his index is virtually inde- 
pendent of sample size, and the present paper not  only 
confirms this but also shows that it is independent of diver- 
sity. Moreover ,  to the best of my knowledge, it is the only 
index that has these properties. Therefore, it deserves a much 
greater popularity than it enjoys at present. Investigators 
comparing different faunal or floral samples should use this 
index in preference to the other indices with their problems of 
sample size and diversity. However,  this index is very sen- 
sitive to changes in abundance of the more common species 
and often produces an erratic picture. In such cases a loga- 
rithmic transformation of the data is desirable and then the 
Morisi ta-Horn index or Renkonen's  index are recommended, 
using the equations in Table 2 to correct for effects of  sample 
size. 

Different species usually behave differently and can have 
strongly variable effects on their resources such as food. A 
numerical difference, therefore, between two localities in one 
species may be much more ' impor tan t '  than the difference in 
another species. Differences in ' impor tance '  between species 
have not been considered here, but the difference between 
samples could be weighed according to some attribute of the 
species like size, dependent on the questions being asked. 

Whatever  the index used, one would like to be able to test 
hypotheses about  the values obtained. Regrettably, to the best 
of my knowledge, such statistical tests are not  yet available, 
although a beginning has been made for the Annual Variabil- 
ity measure (Leigh in preparation). It is hoped that the pres- 
ent paper may help persuade statisticians to come to the 
rescue. 
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