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Abstract. There is now quite an extensive literature based on analysis of multivariate
abundances, which have often been collected according to a MANOVA design. Many test
statistics have been proposed specifically for this case, yet remarkably the power of these
methods has not previously been compared. In this paper, the power of distance-based
statistics (e.g., Mantel, analysis of similarities) is compared to variable-based statistics
(e.g., redundancy analysis, the sum of ANOVA F statistics), when using permutation tests
to assess significance of all statistics. Different choice of transformation, standardization,
and distance measure were considered.

For 19 data sets taken from the literature, P values for the different statistics were
compared. Power simulations were then conducted, where data were generated to mimic
the properties of each of the 19 data sets.

For transformed data, using different distance measures (Euclidean, Manhattan, Bray-
Curtis) and different distance-based statistics had little effect on power. Overall, statistics
based on multivariate analysis of variance (MANOVA) were at least as powerful as others,
although particular data sets gave different results. The distance-based statistics most com-
monly used in the literature do not standardize abundances, so these were more powerful
when effects are present in taxa that are more variable (on the transformed scale), and less
powerful otherwise.

There are several reasons to prefer a statistic based on MANOVA to others (e.g.,
interpretability, generalization to more complex designs), and so we generally recommend
that the MANOVA-based statistics used here be preferred to distance-based statistics.

Key words: community composition data; empirical power comparison; hypothesis tests; MAN-
OVA, with permutation tests; multivariate analysis; permutation test; randomization test; statistical
methods, comparisons.

INTRODUCTION

One of the most widely used types of ecological data
is multivariate abundance data (abundance in each sam-
ple is recorded for many taxa, then each taxon treated
as a variable). Often multivariate abundances are col-
lected in several groups of samples, with the main pur-
pose being to test for differences in abundance among
these groups. For example, to test for community-level
effects of insecticide on zooplankton, several treat-
ments of insecticide could be applied to experimental
ponds, and abundance of different types of zooplankton
compared across treatments, as in Kreutzweiser et al.
(2002). Alternatively, in attempts to describe the effects
of sewage outfalls on benthic invertebrates, inverte-
brate abundances from samples near several outfalls
might be compared to controls, as in Morris and
Keough (2002). The procedures required for such re-
search will be referred to in this paper as requiring a

Manuscript received 15 July 2002; revised 9 May 2003; ac-
cepted 27 May 2003; final version received 25 June 2003. Cor-
responding Editor: N. C. Kenkel.

3 Present address: Department of Statistics, School of
Mathematics, University of New South Wales, NSW 2052
Australia. E-mail: dwarton@maths.unsw.edu.au

‘‘MANOVA test,’’ as these require multivariate ver-
sions of procedures for which analysis of variance (AN-
OVA) is commonly used in the univariate case.

Several statistics have been suggested specifically
for conducting MANOVA tests for this type of data
(Smith et al. 1990, Clarke 1993, Pillar and Orloci 1996,
Anderson 2001). Clearly it is important to understand
whether these statistics all perform equally well, or if
one should be preferred over others. In this paper we
review the different types of statistics used for MAN-
OVA tests of multivariate abundances, and compare
their power.

The various statistics currently used for conducting
a MANOVA test of multivariate abundances fall into
two distinct categories: distance-based and variable-
based statistics. Distance-based statistics are a function
of distances between samples (most commonly, the
Bray-Curtis distance). An example statistic is the av-
erage of all within-group distances (Mielke et al. 1976).
Variable-based statistics are a function of summary sta-
tistics that have been produced for each variable. An
example is the sum across all taxa of logarithms of
ANOVA F statistics calculated for each of the taxa
(Edgington 1995:188).
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Should distance-based statistics be preferred to
variable-based, or vice versa?

The researchers who suggested distance-based sta-
tistics found the assumptions of common procedures
using variable-based statistics to be inappropriate for
analyzing multivariate abundances. More specifically,
it has been noted that the assumptions of multivariate
analysis of variance (MANOVA) are unsatisfactory
(abundances do not follow a multivariate normal dis-
tribution), and that simulations show the Euclidean dis-
tance is inappropriate for analysis of (untransformed)
multivariate abundances (Clarke and Green 1988,
Smith et al. 1990, Anderson 2001).

However, there remain the possibilities of using a
MANOVA statistic on transformed abundances, or an-
other variable-based statistic. It is known that the prop-
erties of ANOVA procedures are robust to modest vi-
olations of assumptions, particularly for balanced data
(Miller 1986). If abundances are transformed to reduce
skew, a MANOVA statistic may have desirable prop-
erties. In addition there is the little-explored possibility
of using variable-based statistics other than MANOVA.

There are two important reasons for preferring a var-
iable-based statistic to a distance-based statistic, if one
is found that has similar performance to distance-based
statistics:

1) Taxon-level effects. Usually it is of interest to
identify the taxa that differ most strongly in abundance
across groups. Summary statistics for each taxon are
calculated in constructing variable-based statistics, so
these can be used to determine which taxa most strong-
ly express differences among groups of samples (for
example, if the test statistic is a function of ANOVA
F statistics, the F statistics can be compared across
taxa). For distance-based statistics, in contrast, addi-
tional, more complicated methodology must be used,
such as the SIMPER procedure (Clarke 1993) or a
leave-one-out procedure (Smith 1998). On the strength
of this argument, some previous authors have preferred
a redundancy-analysis approach (van den Brink and ter
Braak 1998) or Procrustes analysis (Peres-Neto and
Jackson 2001) to distance-based statistics.

2) Transparency of method. When using a distance-
based statistic, it is unclear what is being tested about
the abundance data (e.g., are we testing if mean abun-
dance differs among groups, median abundance, or
something else?). Hence it is unclear what types of
effects are more easily detected, or under what con-
ditions a particular distance-based statistic is appro-
priate. In contrast, most variable-based statistics have
an underlying model with explicit assumptions, e.g.,
the sum of ANOVA F statistics will be appropriate
when typical ANOVA assumptions hold. An important
consequence of failure of assumptions is the possibility
of poor power properties (Staudte and Sheather 1990),
so even if using a permutation test to ensure valid in-
ference, if the sum of ANOVA F statistics is used, it

is desirable that typical ANOVA assumptions hold to
ensure good power properties. Similarly, it may also
be desirable that ANOVA assumptions hold when using
a distance-based statistic (to ensure good power prop-
erties), but simulations would be required to investigate
this.

There are further reasons to prefer a variable-based
statistic that is a simple generalization of univariate
ANOVA statistics:

3) Simplicity. When only one abundance variable is
of interest, data are routinely transformed, and uni-
variate ANOVA applied. So why not use a generaliza-
tion of this method when analyzing multivariate abun-
dances, rather than a completely different approach?

4) Analysis of complex designs. Extensions of AN-
OVA methods to more complex designs are well-
known, e.g., multi-factor designs or when covariates
are present (Underwood 1997), or repeated-measures
designs (von Ende 2001). For multivariate abundances,
if the chosen test statistic is a function of univariate
ANOVA statistics, its extension to complex designs is
relatively straightforward.

A particular example of a statistic based on ANOVA
is the following:

p SSj,0LR-IND 5 N logO 1 2SSj51 j,1

where N is the total number of samples, p the total
number of taxa sampled, and SSj,0 and SSj,1 denote the
univariate residual sums of squares (see Eq. 1 of the
Appendix for more details) for the jth variable under
H0 and H1 respectively. This statistic is referred to here
as ‘‘LR-IND’’ for easy reference, and is of particular
interest because it is a special case of a common MAN-
OVA statistic, Wilk’s L (Anderson 1984:293). Wilk’s
L is the likelihood-ratio test for a MANOVA model,
and it simplifies to LR-IND if it is assumed that all
variables are independent. The assumption of indepen-
dence of variables is made in all test statistics consid-
ered in this paper, it is a necessary assumption so that
test statistics can be calculated even when there are
many more variables than samples.

Like all other statistics considered in this paper, it
is best to use LR-IND only once abundances have been
transformed to reduce skew (so that test statistics do
not have low power because of the influence of a few
large abundances), and only if permutation tests are
used (so that inference is robust to failure of the as-
sumption of independent variables).

Specific aims

This paper compares the power of statistics used to
conduct MANOVA tests of multivariate abundance
data. This subject has never previously been addressed.

Twenty multivariate abundance data sets are used in
this study, to be representative of the multivariate abun-
dance data typically encountered in practice. If simu-
lations had been conducted without reference to a col-
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TABLE 1. Distances considered in analyses, and their expressions in terms of (possibly trans-
formed and standardized) abundances y.

Distance Expression Reference

Euclidean distance
1/2p

2d 5 (y 2 y )Oii9 ij i9j[ ]j51

Legendre and Legendre (1998)

Bray–Curtis distance

p z y 2 y zij i9j
d 5 Oii9 p

j51 y 1 yO ij i9j
j51

Bray and Curtis (1957)

Manhattan distance
p

d 5 z y 2 y zOii9 ij i9j
j51

Legendre and Legendre (1998)

lection of real data sets, results might not be represen-
tative of the multivariate abundance data sets typically
encountered. The use of many real data sets in this
study ensures that conclusions are relevant to the anal-
ysis of multivariate abundances in general.

All P values are calculated by permutation, which
provides an exact test of the hypotheses of interest (or
nearly exact, with some error introduced if only a ran-
dom sample of permutations is used). Hence Type I
error is appropriately controlled by all statistics con-
sidered in this paper, and the remaining issue is Type
II error (or power) when there are known differences
in means among the groups being compared. We ad-
dress the following, for the types of multivariate abun-
dance data typically encountered:

a) Are distance-based statistics necessary, or are al-
ternative statistics as powerful or more powerful in
general?

b) Do the distance-based statistics all have similar
power?

c) To what extent does transformation, standardi-
zation, or choice of distance measure affect conclu-
sions?

This work is also the first to compare different dis-
tance measures for different transformations and stan-
dardizations, in more than one real data set. Previous
studies (Faith et al. 1987, Jackson 1993, Thorne et al.
1999) have assessed the importance of transformation,
standardization, or choice of distance measure, usually
for the purpose of ordination. Some of these studies
(Jackson 1993, Thorne et al. 1999) were based on one
data set, which obviously limits their generality. Sim-
ulation studies previously conducted (Faith et al. 1987)
only considered untransformed data.

METHODS

Procedures to be compared

There are four different stages in conducting a test
of multivariate data, performed in the following se-
quence: Transformation; Standardization (if using a
scale-dependent statistic); Choice of distance measure
(if using a distance-based statistic); and Choice of test
statistic.

The following sections describe the choices consid-
ered in this paper for each of the above steps.

Transformation.—Transformation of abundances re-
duces the influence of outliers, and can remove het-
eroscedasticity. The transformations considered in this
study are: (1) y, i.e., untransformed data; (2) y1/4; and
(3) log(y/a 1 1) (abbreviated as ‘‘log-transformation’’
in this paper) where a is the minimum possible non-
zero abundance for a taxon.

The transformations to y1/4 and log(y 1 1) are the
most commonly applied for abundance data, although
log(y 1 1) has been criticized as scale dependent (Field
et al. 1982). On the other hand, the transformation
log(y/a 1 1) is scale invariant, and in the case of count-
ed data it reduces to log(y 1 1), since 1 is the minimum
possible non-zero counted abundance (so a 5 1). In
this study, some abundances were measured as percnt
cover with minimum values of 0.1 or 0.01, in which
case the log transformation does not reduce to log(y 1
1).

Standardization.—Standardization of variables en-
sures that more-variable taxa do not dominate analyses.

In this study, only distance-based statistics and re-
dundancy analysis (RDA) required standardization.
The other statistics considered are scale invariant (un-
affected by standardization of variables) or implicitly
contain a standardization of variables.

Distance-based statistics were calculated both for
standardized and unstandardized data. The method of
standardization ensures the same average contribution
of each taxon to distance (or to the numerator of dis-
tance, for Bray-Curtis). When Euclidean distances were
used (or in redundancy analysis), data were standard-
ized by sample standard deviation. In the case of Man-
hattan and Bray-Curtis distances, an appropriate stan-
dardization for the jth variable is proportional to the
sum of absolute deviations, as in Mielke and Berry
(2001:50):

N i

s 5 z y 2 y z.O Oj i j i9j
i51 i951

Distance measures considered.—Table 1 describes
the three distance measures considered in this paper.
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TABLE 2. Test statistics to be compared.

Statistic† Reference

a) Distance-based
Smith
Pillar-Orloci
ANOSIM

Smith et al. (1990)
Pillar and Orloci (1996)
Clarke (1993)

b) Variable-based
RDA
CCA
LR-IND

ter Braak and Smilauer (1998)
ter Braak and Smilauer (1998)
this paper

FO Edgington (1995: 188)

† ANOSIM 5 analysis of similarities; CCA 5 canonical
correspondence analysis; LR-IND 5 likelihood-ratio test, as-
suming independence of variables; RDA 5 redundancy anal-
ysis; S F 5 the sum of ANOVA F statistics.

These distance measures were chosen either because
of previous recommendations, or because the distance
has a simple form. The Euclidean distance has been
recommended for this type of analysis as the most in-
terpretable measure (Mielke and Berry 2001). For mul-
tivariate abundances, however, the Bray-Curtis dis-
tance is the most common choice in the literature. The
Manhattan distance has a simpler form than the Bray-
Curtis distance, and also is a function of absolute values
of distances, and so is expected to be robust to outliers
(Gower and Legendre 1986).

In one of the data sets analyzed in this paper, no taxa
were present in two observations. This presented a
computational problem for the Bray-Curtis, because the
denominator equalled zero for the distance between
these two observations. In this case the distance was
set to 1 because for the Bray-Curtis, the interpretation
of dii9 5 1 is that no taxa are present in both obser-
vations i and i9. Observations with 0 total abundance
were not excluded from the data set, because this would
have biased estimates of mean abundance.

Test statistics.—We considered the test statistics in
Table 2. The expressions for calculation of each of
these statistics are given in Appendix A, as are details
on other papers that suggest distance-based statistics
equivalent to these. In particular, the Smith and Pillar-
Orloci statistics are specific cases of MRPP (multires-
ponse permutation procedure; Mielke et al. 1976), or
equivalently, of Mantel (Mantel 1967) statistics.

None of these statistics accounts for correlation of
abundance between taxa, and RDA and distance-based
statistics do not account for the different variability of
abundance in different taxa. This can be seen by look-
ing at the expressions for the distance measures (Table
1) and variable-based statistics (see Appendix A) con-
sidered: none of these expressions include a measure
of correlation between variables, and in RDA and dis-
tance-based statistics, abundance of each taxon is not
weighted by some measure of variability. Only LR-
IND and S F are scale-invariant statistics.

The ANOSIM statistic, as defined in this paper (see
Table A.1), has a similar form to the Smith statistic.

The only difference between these is that the ANOSIM
(analysis of similarities) statistic is a function of ranks
of distances, whereas the Smith statistic is a function
of the distances themselves.

The RDA and S F statistics are rare cases in which
it is possible for a variable-based statistic to be reex-
pressed as a distance-based statistic. The RDA statistic
is equivalent to the Pillar-Orloci statistic calculated on
Euclidean distances, and S F is equivalent to RDA,
where data are standardized to equal within-group var-
iance (and this standardization is reapplied to each re-
sampled data set). In this paper, the standardization
used for RDA and distance-based statistics was to stan-
dardize by some measure of total variability. This can
be compared to standardizing by a measure of within-
group variability by comparing RDA calculated on
standardized data to S F.

The LR-IND and S F statistics will be referred to as
‘‘MANOVA statistics,’’ because they can be derived
from the respective MANOVA statistics Wilk’s L and
Hotelling-Lawley trace (Anderson 1984:323), by as-
suming independence of variables.

Power comparison

The power of different test statistics was compared
in two ways: (1) Comparison of P values, and (2) Com-
parison of power estimated from simulations.

This work used 20 data sets that were taken from
applications (Table 3). These will be referred to in the
following as ‘‘reference data sets,’’ a notation neces-
sary to simplify explanations in this section.

All work was conducted on Matlab version 5
(MathWorks 1998).

In all instances where a test statistic was calculated,
any variable with only one (or no) non-zero element
was excluded. Such a variable (on its own) could pro-
vide no useful information for the designs considered.
On the other hand, variables with two non-zero ele-
ments were included, because such variables could po-
tentially provide reasonable evidence against H0 for
many of the designs considered.

The significance of all test statistics was assessed
using permutation tests. For most reference data sets,
P values were determined by permuting samples within
the groups defined under H0 (hence among the groups
defined under H1). This is known as ‘‘restricted per-
mutation’’ or ‘‘restricted randomization’’ (Manly 1997:
127), attributed to Edgington (1995). For reference data
sets that included nested factors not being tested (in-
dicated in Table 3), blocks of samples representing dif-
ferent levels of the nested factor were permuted. This
method enabled testing of the hypotheses of interest
while controlling for the effects of other nested factors.

Some of the reference data sets considered (as in-
dicated in Table 3) were not sampled as MANOVA
designs, but sample descriptions were available or con-
tinuous variables were measured for each sample. In
these cases, factors were derived from the available
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TABLE 3. Reference data sets, and their properties.

Source Abundance N p Subsampled†
No. of

factors‡ Balanced?§

N. Andrews
A. Pik
Moulton (1982)
Moulton (1982)
I. Lunt
B. Rice
J. Overton

count
count
count
count
count
% cover
% cover

120
49
14
16
20
41
38

13
24
36
28
44

135
139

time
···
obs., time
time
time
treatments
···

1n

1n

1n

3
1
1d

2d

yes
no!
no
yes
yes
no!
no!

B. Rice
B. Rice
Clements (1980)
A. Pik
Warwick et al. (1990b)
T. H. Pearson and J. Blackstock\
Gray et al. (1990)

% cover
% cover
% cover
count
count
biomass
count

13
39
24

134
12
12
22

76
293

22
21
17
46

113

treatments, time
excluded
treat., var., time
···
treatments
···
treatments

1d

2
2
1n

1
2d

1d

no
no
yes
yes
yes
no!
no

Warwick et al. (1988)
Gee et al. (1985)
Warwick et al. (1990a)
van Dobben et al. (1999)
van den Brink et al. (1996)
van der Aart and Smeenk-Enserink (1970)

count
count
count
count
count
count

12
12
16
32
12
28

43
39
11
77
31
12

treatments
···
···
···
variables, time
···

1
1
2
2
1
2d

yes
yes
yes
yes
no!
no!

Notes: Data are unpublished if a name is given instead of a citation. Size of data set analyzed is N 3 p.
† ‘‘Subsampled’’ refers to whether a data set had been reduced in size by selecting a subset of all treatments, variables,

and observations, or by analyzing only one of several sampling times.
‡ ‘‘No. of factors’’ is the number of factors involved in the hypothesis test considered here; superscript n means there was

an additional nested factor in the design, so that blocks of samples were permuted rather than samples; superscript d means
data were not originally collected according to a MANOVA design, and factors for a MANOVA test later derived from
information on samples.

§ ‘‘Balanced?’’ refers to whether or not sampling was balanced, and ‘‘no!’’ indicates sample sizes in different groups
differed by a factor of 2 or more.

\ Their 1984 report (‘‘Garroch head sludge dumping ground survey’’) is available from Dunnstaffnage Research Laboratory,
Oban, Scotland.

data, in a manner that kept designs as balanced as pos-
sible.

For each reference data set, a hypothesis test was
chosen such that most statistics suggested there was
some evidence against the null, but not overwhelming
evidence against the null (0.001 , P , 0.1). It was
important that there be some evidence against the null
(P , 0.1 for most statistics) to ensure that in most
cases H1 was true, so that a powerful test statistic could
be expected to have small P values in most cases. How-
ever, if there was overwhelming evidence against the
null (P # 0.001 for most statistics), then P values for
all test statistics would be similar and their comparison
uninformative. In multi-factor designs, there were sev-
eral possible hypothesis tests, from which one was cho-
sen to satisfy 0.001 , P , 0.1 (for most statistics)
while also being a hypothesis of some biological in-
terest (e.g., testing for an effect of latitude was pre-
ferred to testing for an effect of study site within lat-
itudes). When there was strong evidence against H1 for
all possible hypothesis tests, a subset of the data set
was used (as indicated in Table 3) to ensure that 0.001
, P , 0.1 for most statistics. One data set (Table 3:
ninth entry) was excluded because of lack of evidence
for H1 (all P values were large, P . 0.1 for most sta-
tistics).

Abundances were measured at several times in some
data sets (indicated in Table 3). Abundances at only

one sampling time were considered here, so that abun-
dances within a taxon were not correlated (which would
complicate analysis).

Comparison of P values.—As a rough measure of
power, P values were calculated for the 19 reference
data sets (Table 3). A statistic that is generally more
powerful than others in practice will have generally
lower P values, and very different P values for a given
data set suggest statistics have very different power in
particular instances.

All P values were calculated exactly or close to ex-
actly, by permutation. When the total number of pos-
sible permutations was less than 10 000, these were
systematically sampled and the test was exact. In other
cases, P values were estimated from 10 000 random
permutations, and the test was no longer exact because
of the introduction of Monte Carlo error (from the ran-
dom selection of permutations). However, this error
was negligible (for example, the standard error of a P
value of 0.05 is only 0.002).

P values were interpreted on a proportional (loga-
rithmic) scale (using geometric means rather than arith-
metic means), and truncated at 0.001. This was done
to remain consistent with the way P values are inter-
preted in practice: P values of 0.01 and 0.1 are con-
sidered to be as different as P values of 0.001 and 0.01,
and all P values smaller than 0.001 are usually inter-
preted the same way.
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Power simulation.—More intensive analyses were
conducted to directly estimate power under a variety
of controlled situations. These simulations were very
computationally intensive (requiring over three weeks
of total computation time).

The power of a statistic was estimated as the pro-
portion of times it was significant at the 0.05 level, for
1000 sets of data generated from the same distribution.
For each of these data sets, statistical significance was
assessed using 1000 permutations.

For each of the 19 reference data sets, three simu-
lations were conducted, in which data were generated
to mimic the properties of the reference data set. The
negative binomial distribution was used to generate
data (using the ‘‘nbinrnd’’ function included in Mat-
lab’s Statistics toolbox 2.1 [The MathWorks 1998]), as
abundances in the reference data sets were noticed to
have similar properties to this distribution (in terms of
mean–variance relationship and frequency of zeros).
Abundances in different taxa were generated indepen-
dently. The design, number of variables, and samples
was kept as in the reference data set, and the parameters
of the negative binomial distribution (the mean m and
a nuisance parameter f, such that the variance is V(m)
5 m 1 fm2) were chosen to match sample estimates
from the reference data set. For each simulation, var-
iables were chosen to be either ‘‘null’’ (no difference
in distribution of abundances across groups being com-
pared) or ‘‘effect’’ variables (the distribution of abun-
dances differs across the groups being compared). The
means of null and effect variables were chosen to match
sample estimates under H0 and H1, respectively, and a
single nuisance parameter (f) was chosen for each var-
iable to equal the sample (moments) estimate under H0

and H1 for null and effect variables, respectively.
Independent variables were generated because it was

not feasible to obtain sample estimates of parameters
for a model accounting for correlation between vari-
ables. Correlated data could be generated through the
use of random effects, the most appropriate model be-
ing a multivariate Poisson-lognormal model. However,
estimation of parameters for this model is computa-
tionally demanding (McCulloch and Searle 2001:Chap-
ter 10), and is not possible when p is at least as large
as N (N , p in many of the reference data sets, see
Table 3). It is unlikely that abundances would be un-
correlated in practice, so assuming independence does
not provide a realistic model of correlations between
variables. However, as none of the test statistics con-
sidered in this paper account for correlation between
variables, there is no reason why response to correla-
tion would differ between statistics.

The three simulations conducted for each reference
data set used different methods of choosing effect and
null variables:

1) No effect variables. All variables were null var-
iables. This simulation was used to demonstrate that
restricted permutation testing provides exact signifi-

cance levels (so power ø 0.05). Given computational
demands, this simulation was only conducted for seven
statistics (LR-IND and the Pillar-Orloci statistics for
log-transformed data).

2) Few effect variables. A few effect variables were
selected to have very different means and variances
across groups. Effect variables were chosen from the
reference data set as those whose univariate ANOVA
statistics gave P , 0.05 for log-transformed data. The
criterion P , 0.05 was used in choosing effect variables
so that there were substantial differences among pop-
ulation means in simulations. For some reference data
sets this provided too many or too few effect variables,
so that power was very high or very low for all statistics
being compared. In such cases, effect variables were
selected using slightly different criteria (as those with
P , 0.1, P , 0.01, or P , 0.002) to ensure (if possible)
that 0.1 , power , 0.9 for all statistics.

3) Many effect variables. Many effect variables were
selected to have very small differences in means and
variances across groups. Effect variables were chosen
as those with P . 0.5, when conducting a univariate
ANOVA following log-transformation, on each vari-
able from the reference data set. Again this criterion
was modified (to P . 0.6 or P . 0.4), to ensure (if
possible) that 0.1 , power , 0.9 for most statistics.

Power has been presented on an arithmetic scale. The
average power of a statistic across all reference data
sets then has an interpretation as the overall proportion
of times the statistic was significant at the 0.05 level.

RESULTS

Most differences in results could be attributed to
whether or not a reference data set was very unbalanced
(i.e., sample size of groups varied over a factor of 2
or more), and to the relative magnitude of the variance
of effect variables. Consequently, all figures and tables
distinguish very unbalanced data (those for which sam-
ple sizes in some groups differ by a factor of 2 or more)
from other data sets, and where appropriate, figures use
different marker sizes according to the how large the
variance of effect variables is compared to the variance
of null variables. The index used for marker size was
the ratio of average variance of effect variables to av-
erage variance of null variables (of appropriately trans-
formed abundance).

Computation time was not an issue for significance
testing of a given data set. The CCA (canonical cor-
respondence analysis) statistic was the most compu-
tationally demanding, yet for the largest data set con-
sidered here, it took only one minute to evaluate its
significance with 10 000 permutations. The raw re-
sults (P values for the 19 data sets and power from
simulations of these data sets) can be found in Appen-
dix B.

Comparison of P values

Using geometric mean P value as a measure of power
(Fig. 1a), there was similar power for different trans-
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FIG. 1. Comparison of geometric mean P value of different statistics. Plotted points are geometric mean P value across
(a) 13 data sets with balanced (or close-to-balanced) designs, and (b) six data sets with very unbalanced designs (where
sample sizes of some groups differ by a factor of 2 or more). Note that the x-axis scales are logarithmic. Abbreviations:
ANOSIM 5 analysis of similarities, B-C 5 Bray-Curtis distance measure, CCA 5 canonical correspondence analysis, Euc.
5 Euclidean distance measure, LR-IND 5 likelihood-ratio test assuming independence of variables, Man. 5 Manhattan
distance measure, Pillar-Orloci 5 the statistic due to Pillar and Orloci (1996), Smith 5 the statistic due to Smith et al. (1990),
stand. 5 standardization of data, RDA 5 redundancy analysis, and SF 5 the sum of ANOVA F statistics. See Table 2 for
additional citation information.

formations of data sets with balanced (or close to bal-
anced) designs. In very unbalanced designs (Fig. 1b),
however, P values were generally much lower when
calculated on transformed abundances. This pattern
was less obvious when the Bray-Curtis distance was
used.

Only for unbalanced designs were P values generally
lower when using the Bray-Curtis distance than for

other approaches (Fig. 1). The opposite was observed
for balanced designs (P values being relatively large
for the Bray-Curtis distance), so that for transformed
data, the geometric mean P value across all data sets
was similar for all Pillar-Orloci statistics and all var-
iable-based statistics.

Standardizing data did not substantially change the
geometric mean P value for transformed abundances.
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FIG. 2. ANOVA F statistic vs. sample var-
iance for log-transformed abundance of each
taxonomic group, for a reference data set where
taxa with substantial differences in abundance
between groups (i.e., high F [F . 7 and P ,
0.01], plotted with solid circles) also have low
variances.

However, substantial effects were occasionally ob-
served. For example, for the RDA (redundancy anal-
ysis) statistic calculated on log-transformed abundanc-
es, one P value changed from 0.13 to 0.003 with stan-
dardization. Closer consideration of this data set re-
vealed that a strong treatment effect was only observed
in taxa whose abundances were less variable on the
log-transformed scale (Fig. 2).

Power simulations

In the simulation with no effect variables, as ex-
pected, the average power of no statistic was signifi-
cantly different from 0.05. In fact average power
equalled 0.05 to two decimal places for all seven of
the statistics for which a simulation with no effect var-
iables was conducted. This was expected because using
permutation tests ensures exact (or nearly exact) sig-
nificance levels, when testing across several groups of
observations for a difference in the distribution of
abundances.

In the simulation with many effect variables, most
data sets had 5–20 effect variables. In the simulation
with few effect variables, there were 1–5 effect vari-
ables in most cases, with more on only two occasions.

Considering separately the simulation results for
each data set, a variable-based statistic had the highest
power in the majority of cases. A variable-based sta-
tistic had highest power in 24 of the 32 simulations for
which there was not a tie. This was so despite there
being almost 3 times as many distance-based statistics
as there were variable-based ones, when considering
all possible choices of standardization, transformation,
and choice of distance.

In individual simulations and overall, power was
usually higher for the MANOVA-based statistics (LR-
IND and S F) than for most distance-based statistics
(Fig. 3). In fact, average power was higher for S F
than for any other statistic, in simulations with few
effect variables, for transformed abundances (Fig. 3a).
For transformed abundances in simulations with many
effect variables, average power was similar for Pillar-
Orloci statistics and MANOVA-based statistics, but
lower for other distance-based statistics (Fig. 3b). Dis-
tance-based statistics had much lower power than
MANOVA-based statistics in simulations with few ef-

fect variables, except when distance-based statistics
were calculated on unstandardized log-transformed
abundances, in which case average power was similar
to MANOVA-based statistics (Fig. 3a). Even in this
case, distance-based statistics in individual simulations
rarely had substantially higher power than MANOVA-
based statistics (Fig. 4). Substantial differences in pow-
er between MANOVA-based and unstandardized dis-
tance-based statistics occurred only when effect vari-
ables had very high or very low variance, compared
to null variables. In three cases, for log-transformed
data, the distance-based statistics had substantially
higher power than LR-IND, when effect variables all
had high variance (large symbols in Fig. 4b,e). In one
case distance-based statistics had substantially lower
power, when effect variables all had low variance
(small symbol in Fig. 4c,f).

Choice of distance measure had little effect on the
power of a test statistic, for transformed data. This was
true of power overall (Fig. 3), of power in individual
cases (Fig. 5), and of P values (Fig. 5a). This suggests
that for log-transformed data, RDA could generally be
used in place of distance-based statistics with no loss
of power. This is in direct contradiction to what has
been assumed to be the case in the past, it generally
being considered inappropriate for analyses to be based
on Euclidean distances. For untransformed abundanc-
es, statistics using the Euclidean distance had lowest
power, and the Bray-Curtis distance should be preferred
in this case (Fig. 3).

Choice of distance-based statistic had a small but
consistent effect on average power (Fig. 3). The dif-
ferences in power among statistics usually kept the rank
order (ANOSIM , Smith , Pillar-Orloci) consistent
with results for P values. However, the effect on power
of choice of distance-based test statistic was small com-
pared to the effects of transformation and standardi-
zation.

With few exceptions, statistics had greatest power
when log(y/a 1 1) transformed, and least power when
untransformed. This was true in most individual sim-
ulations (Fig. 6), not just in averages (Fig. 3). As was
the case for P values, differences in power were small
for balanced designs, but considerable for very unbal-
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FIG. 3. Comparison of the overall power of different statistics. Plotted points are power averaged across the 19 data sets,
for simulations (a) with few effect variables and (b) with many effect variables. Different symbols are used for different
transformations of data. The RDA (redundancy analysis) statistic is equivalent to the Pillar-Orloci statistic for Euclidean
distances. For transformed abundance, the standard error of average power was in the range 0.05–0.07, but it was 0.05–0.09
for untransformed abundance. See the Fig. 1 legend for the key to abbreviations.

anced designs. There was only a small difference in
average power between log-transformed and y0.25-
transformed abundance in most cases; however, the dif-
ference was substantial for unstandardized distance-
based statistics in the simulation with few effect var-
iables. This suggests that on the log(y/a 1 1) scale,
the variance of effect variables was large for some data
sets, whereas this was not the case on the y0.25 scale.

Standardization of RDA and distance-based statistics
had substantial effects on power, which was not evident
on consideration of P values. For log-transformed
abundance, standardization was accompanied by a

marked decrease in average power (Fig. 3a) when there
were few effect variables. In such simulations, there
was frequently a substantial loss of power with stan-
dardization, and rarely a substantial gain (Fig. 7b). The
loss of power occurred only in cases when the effect
variables had high variances, hence their influence on
the test statistic was greater for unstandardized data.
Standardization had little effect on power in simula-
tions with many effect variables, except in one case
where power was far higher for standardized data (0.84)
than for unstandardized data (0.29), because all effect
variables had small variances on the log-transformed
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FIG. 4. Comparison of the power of a distance-based and a MANOVA statistic. For log-transformed data, the LR-IND
statistic (likelihood-ratio test assuming independence of variables) is plotted against the Pillar-Orloci statistic calculated on
unstandardized data using (a–c) the Bray-Curtis (B-C) distance or (d–f) the Manhattan (Man.) distance. ‘‘Few effect’’ and
‘‘many effect’’ indicate the relative number of effect variables. A ‘‘1’’ indicates very unbalanced data (where sample sizes
in some groups differ by a factor of 2 or more). In panels b, c, e, and f, the circular marker size is larger when the average
variance of effect variables is larger.

FIG. 5. The effect on power of using a different distance measure, for transformed abundances. ‘‘Few effect’’ and ‘‘many
effect’’ indicate the relative number of effect variables. This figure shows the Euclidean vs. Bray-Curtis distance, for the
Pillar-Orloci statistic calculated on unstandardized log-transformed data. Note that the Pillar-Orloci statistic for the Euclidean
distance is equivalent to the RDA statistic. A ‘‘1’’ indicates very unbalanced data.

scale. For statistics based on untransformed abundanc-
es, such dramatic differences in power were common,
and average power was substantially higher for stan-
dardized data when there were many effect variables
(Fig. 3b).

The contrast between S F and the standardized RDA
statistic demonstrates that there is a distinct power ad-
vantage in standardizing to equal within-group vari-

ance, rather than to equal total variance. The S F sta-
tistic is equivalent to an RDA statistic standardized by
within-group variance (for each permuted data set).
Power was usually similar for these two statistics.
However, in several simulations with few effect vari-
ables, the S F statistic had substantially higher power
than the standardized RDA statistic (Fig. 8), while the
reverse never occurred.
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FIG. 6. The effect of transforming data on power. ‘‘Few effect’’ and ‘‘many effect’’ indicate the relative number of effect
variables. Log-transformed vs. untransformed abundances are compared for the LR-IND statistic. A ‘‘1’’ indicates very
unbalanced data.

FIG. 7. The effect of standardizing data on power. ‘‘Few effect’’ and ‘‘many effect’’ indicate the relative number of effect
variables. Power is compared for standardized vs. unstandardized log-transformed data, when using the RDA (redundancy
analysis) statistic. A ‘‘1’’ indicates very unbalanced data. In (b) and (c) the marker size is larger when the average variance
of effect variables is larger.

DISCUSSION

These results provide no evidence that distance-
based approaches are necessary when analyzing mul-
tivariate abundances. When data had been transformed
to reduce skew, choice of distance had little influence
on power, and variable-based statistics such as RDA
(redundancy analysis), LR-IND (likelihood ratio test,
assuming independence of variables), and S F had com-
parable or greater power than other statistics in most
power simulations conducted. This means that, for a
given data set, one is at least as likely to detect dif-
ferences among groups of multivariate abundances
when using a variable-based statistic as when using a
distance-based statistic.

It is recommended that a MANOVA-based statistic
(S F or LR-IND) be used when conducting MANOVA
tests of multivariate abundances (of the statistics con-
sidered here). It has been established in power simu-
lations that these statistics usually have relatively high
power, although some other statistics had similar over-
all power. Advantages of using MANOVA-based sta-
tistics were mentioned in the introduction, and these
provide a basis for preferring these statistics, given that
no other statistic had a distinct power advantage.

There are a number of more peripheral issues arising
from these results, which we consider in the following.

Standardization of data

Analyzing unstandardized data using the distance-
based statistics considered here will emphasize effects
in taxa whose transformed abundances are more vari-
able, and ignore effects in taxa whose transformed
abundances are less variable. This explained the few
cases with a substantial difference in power between
LR-IND and the Pillar-Orloci statistic for log-trans-
formed unstandardized data (Fig. 4), but was more
clearly seen in a direct comparison of the RDA statistic
calculated on unstandardized vs. standardized data
(Fig. 7). The trend was more extreme when there were
few effect variables, because in this case it was more
likely for all effect variables to have high variances or
for all to have low variances. The effect on power was
exaggerated in favor of unstandardized data in Fig. 7,
because of a failure of the method of standardization,
as discussed below.

It is recommended that data be standardized to equal
within-group variability, not to equal total variability.
In this study, distance-based statistics and RDA were
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FIG. 8. The effect on power of standardizing by within-group variance rather than by total variance. ‘‘Few effect’’ and
‘‘many effect’’ indicate the relative number of effect variables. Power is compared for S F vs. standardized RDA, for log-
transformed data. The RDA statistic was standardized to equal total variance, whereas the S F statistic is equivalent to an
RDA standardized to equal within-group variance. A ‘‘1’’ indicates very unbalanced data.

standardized by a measure of total variability, as pre-
viously recommended (Mielke and Berry 2001). How-
ever, total variability is a function of among-group var-
iability, so if standardized by total variability, taxa with
larger differences among groups are given less relative
weighting in analysis, and so power is often lower (Fig.
8). Despite the power advantage of standardizing by a
measure of within-group variability, it is not routinely
done in practice, and would be difficult to implement
for distance-based statistics. This would require recal-
culation of the distance matrix for each permutation,
because within-group variability changes with each
permutation. On the other hand, if the variable-based
statistics recommended from this study were used,
there would be no need to standardize data prior to
analysis (nor to choose a distance measure).

Whereas it has previously been stated that often it
is desirable to give greater weight to abundant taxa in
analyses (Clarke and Green 1988, for example), it
should be noted that not standardizing data does not
always give higher weight to abundant species. Failing
to standardize transformed data can reduce the influ-
ence of abundant taxa, rather than the opposite. For
example, the taxon with the highest F statistic in Fig.
2 is also the most abundant, despite having one of the
lowest variances on the transformed scale. In this case,
statistics calculated on unstandardized data did not de-
tect the strong group effect, even though it was ex-
pressed in the most abundant variable.

If it is considered desirable to weight abundant spe-
cies more than rare ones, it is recommended that the
weights for each taxon be determined a priori, and that
the test statistic be modified to incorporate these. For
example given weights wj, the test statistic could be

wjFj, where Fj is the ANOVA F statistic for thepSj51

jth variable. This approach ensures the researcher con-
trols the weightings given to each taxon, rather than
(possibly incorrectly) assuming that not standardizing
data gives the desired weightings.

Correlated abundances in different taxa

Correlation of abundances between taxa is expected
to occur in practice, and research is required to find
effective ways to account for correlation in data with
many variables. None of the test statistics in this study
attempted to account for correlation between variables,
because of difficulties doing so when there are more
variables than samples. However, it is desirable to ac-
count for correlation between taxa, just as it is desirable
to account for different variances in different taxa. This
is because the effect on power of not accounting for
correlation is known to be similar to the effect of not
standardizing variables. If differences in variance
across taxa are not accounted for, there is high power
at detecting differences among means in more variable
taxa, and low power for differences among means in
less variable taxa. Similarly, when correlation is not
accounted for, there is high power at detecting differ-
ences in means along principal component axes with
high variance (i.e., along axes of high correlation), but
relatively lower power for other changes in means
(Mielke and Berry 2001:53–63). Alternatives to as-
suming independence are currently under investigation.

When there are many fewer variables than samples,
a standard MANOVA statistic such as Wilk’s L (the
statistic from which LR-IND was derived) could be
used, possibly with permutation testing to ensure a val-
id test. A common example of when there are many
fewer variables than samples is when sampling inver-
tebrates in pitfall traps (usually many samples), and
only sorting them to order (few taxa). Apart from the
MANOVA-based statistics, none of the statistics con-
sidered in this study can be easily generalized to ac-
count for correlated abundances in different taxa.

Transformation

The importance of data transformation was high-
lighted in the often-large increases in power with trans-
formation (Fig. 3 and 6). The transformations consid-
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ered here have two effects relevant to power: to reduce
the skew of data, and to reduce differences in variance
of different groups and different taxa. The latter of
these effects explains the marked increase in power
with transformation of MANOVA-based statistics for
unbalanced designs (Fig. 6b and c), as ANOVA statis-
tics are known to be sensitive to unequal variances
when sample sizes are unequal (Miller 1986). The fact
that a similar pattern was observed for distance-based
statistics suggests they share this sensitivity to heter-
oscedasticity in unbalanced designs. The methods least
affected by transformation were those that have pre-
viously been reported to be robust to strongly skewed
data: the Bray-Curtis or Manhattan distance (Gower
and Legendre 1986), and the statistic based on ANOVA
when excluding very unbalanced designs (Miller
1986).

Previous work

Results comparing distance measures were consis-
tent with previous simulation work. Faith et al. (1987)
conducted simulations on untransformed abundances,
and also found that the Bray-Curtis distance should be
preferred to the Euclidean and Manhattan for analysis
of untransformed abundances. They did not, however,
consider the case where data had been transformed to
reduce skew and the influence of outliers.

This study highlights the importance of using mul-
tiple data sets when comparing different methods of
analysis. In the past a single data set has often been
analyzed several ways, and results published as a com-
parison of different standardizations (Cao et al. 1999),
transformations (Jackson 1993, Thorne et al. 1999), or
of data classified to different taxonomic resolutions
(Mistri and Rossi 2001). Results were often very dif-
ferent for different data sets in Fig. 4–8, which could
lead to very different conclusions concerning which
statistic is most powerful. Clearly results from analysis
of a single data set have little generality.

Recommendations for related problems

Only the analysis of quantitative abundances has
been considered in this paper, but recommendations can
be made for the analysis of presence–absence data and
semi-quantitative abundances (e.g., the Braun-Blan-
quet scale, where abundances are scored from 0 to 5).
Jongman et al. (1987) suggested treating semi-quan-
titative abundances as if they were transformed data,
and analyzing them on the scale on which they were
recorded. This could readily be done using either of
the MANOVA-based statistics considered here. Pres-
ence–absence data, being binary, are appropriately an-
alyzed using logistic regression models, and indeed
have been analyzed in this manner in the univariate
case since at least Austin et al. (1984). A multivariate
test statistic using logistic regression could be defined
as the sum across all taxa of the change in deviance of
each taxon. This is the likelihood-ratio statistic for

presence–absence data, assuming independence of
abundances across taxa, and it shares most of the ad-
vantageous properties described here for LR-IND. If
data were a mixture of both presence–absence and
quantitative abundances, the appropriate likelihood-ra-
tio test statistic would be a sum of logistic regression
and LR-IND statistics.

Whereas only MANOVA tests were considered here,
the same principles can be applied to analyses relating
continuous environmental variables to multivariate
abundances. At present the methods most commonly
used are distance-based (Clarke and Ainsworth 1993)
or CCA (ter Braak and Smilauer 1998), which assumes
a linear relationship between each environmental var-
iable and the transformation of abundances described
in Appendix A. Using linear regression methods for
log-transformed abundance in each taxon and either of
the MANOVA-based statistics provides a conceptually
simple alternative, which preserves the merits of the
MANOVA-based approach previously outlined. Using
nonparametric methods of line fitting (Efron and Tib-
shirani 1991) rather than linear regression would have
the additional benefit of not requiring the linearity as-
sumption.

Conclusions

There was no apparent advantage in power if using
distance-based statistics rather than a variable-based
approach on transformed data, yet there are many rea-
sons to prefer a variable-based approach. There are
many alternative variable-based statistics that could be
considered, for example those designed for counted
data (McCullagh and Nelder 1989:chapter 6), and mod-
ifications specifically suggested for abundance data
(Welsh et al. 1996). We are presently investigating such
methods.
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APPENDIX A

CALCULATION OF TEST STATISTICS

Distance-based statistics

Table A1 presents distance-based statistics that have been
suggested in the multivariate abundance literature or else-
where. In each case, it was proposed that permutation tests
be used for inference.

The Mantel and MRPP (multiresponse permutation pro-
cedure) statistics are conceptually equivalent (Mielke 1978),
through appropriate choice of distance. Also, Ti is invariant
under permutation of samples, so the Smith statistic is equiv-
alent to a Mantel statistic (where all ck 5 1), and the AMOVA
(analysis of molecular variance), Gower-Krzanowski, Pillar-
Orloci, and NP-MANOVA (nonparametric multivariate anal-
ysis of varianace) statistics are equivalent. In fact, all statistics
except ANOSIM (analysis of similarities) are equivalent to
the MRPP statistic, for different choices of ck and r, the Smith
statistic requiring

nkc } 1 2k 2

and r 5 1, and the Pillar-Orloci statistic requiring ck } nk 2
1 and r 5 2.

These statistics were generalized to multi-factor designs as
suggested in the literature (Mielke et al. 1976, Pillar and
Orloci 1996, ter Braak and Smilauer 1998, Gower and Krza-
nowski 1999, Anderson 2001). For example, consider testing
for an effect of factor B (which has b levels) while controlling
for the effect of factor A (which has a levels). To find statistics
in this case, distance terms in the numerator and denominator
are pooled across all a levels; e.g., in the Pillar-Orloci sta-
tistic, Wk,2 /nk is summed across all ab groups, and T2 /N is
calculated within and summed across each of the a levels.

Although the ANOSIM and Smith statistics can be used in
multi-factor designs (Smith et al. 1990, Clarke 1993), main
effects are not defined, and so interaction terms cannot be
tested. This is not necessarily a disadvantage, because for
distance-based statistics it is unclear what an interaction
means for taxon abundances anyway.

The ANOSIM statistic, as defined here, only differs from
the Smith statistic in its use of ranks of distances. The AN-
OSIM statistic was originally defined as the expression in
Table A1 rescaled so that its maximum value is 1, and only
for comparing two groups (Clarke 1993). The suggested gen-
eralization to the g-group case was to average across all pair-
wise comparisons of groups. We have used the definition in
Table A1, because it has a simpler form, and its relationship
to the Smith statistic allows consideration of the effect of
using ranks of distances. For balanced data, our approach is
equivalent to Clarke (1993).

Variable-based statistics
Table A2 presents variable-based statistics that have been

suggested in the multivariate abundance literature or else-

where. In each case, it was proposed that permutation tests
be used for inference.

All the statistics in Table A2 are functions of the residual
sum of squares for the jth variable, which as usual is defined
as

N
2SS 5 (y 2 m̂ )Oj,a ij ij,a

i51

where yij is the abundance in the ith sample and the jth var-
iable, and ij,a is the estimated mean for yij according to anm̂
ANOVA model that assumes Ha. The estimates ij,a are least-m̂
squares estimates in the sense that they minimize SSj,a. For
ANOVA models without interaction terms, the ij,a are samplem̂
means across all samples in the same group as the ith sample,
for the grouping structure defined under Ha.

For a couple of variables, SSj,1 5 0, because in each group,
abundances of all samples were the same (usually 1 or 0).
This caused computational problems for LR-IND (likelihood-
ratio test assuming independence of variables) and SF, be-
cause these respectively involve the logarithm and the inverse
of each SSj,1, and both are undefined if SSj,1 5 0. This problem
was solved for LR-IND by setting zero values of SSj,1 to N/
2pe, because this value ensured that the log likelihood of the
jth variable was 0 under H1. For S F, SSj,1 was recalculated
for the denominator of the F statistic as if one of the zero
abundances were actually equal to the smallest non-zero num-
ber.

The RDA (redundancy analysis) and CCA statistics used
here are referred to as tests of ‘‘all canonical axes’’ by ter
Braak and Smilauer (1998:49). The transformation and
weightings for CCA are motivated by assuming abundances
come from Poisson distributions, which is a poor assumption
for strongly skewed abundances, and in particular for trans-
formed abundances.

Note that RDA is equal to Edgington3 (Edgington 1995:
89–90). Because SSj,0 is invariant under permutation, RDA is
also equivalent to Ward’s E statistic (Romesburg 1985).

As mentioned previously, S F is equivalent to an RDA
statistic calculated on data standardized to equal within-group
variance, where the standardization is recalculated in each
permutation during testing. The CANOCO package (ter Braak
and Smilauer 1998) offers this choice of standardization, al-
though in CANOCO the standardization is not reapplied for
each permutation of data (C. J. F. ter Braak, personal com-
munication) and so the test is not valid.

The S logF statistic suggested by Edgington (1995) was
not considered in power comparisons, because logF is left
skewed, so the statistic is expected to be dominated by oc-
casional small F values and not by the size of the larger ones.
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TABLE A1. Distance-based statistics for one-factor MANOVA tests.

Name† Statistic Reference

a) From literature outside ecology

Mantel‡
g

c WO k k,1
k51

Mantel (1967)

MRPP§

g Wk,rcO k
k51 nk1 22

Mielke et al. (1976)

AMOVA
g Wk,2O

nk51 k

Excoffier et al. (1992)

Gower-Krzanowski
gT W2 k,22 O

N nk51 k

Gower and Krzanowski (1999)

b) From ecology literature

Smith

g

T 2 WO1 k,1
k51

g

WO k,1
k51

Smith et al. (1990)

ANOSIM

g g

R(T ) 2 R(W ) R(W )O O1 k,1 k,1
k51 k512

(N 2 n )k nk

2 1 22

Clarke (1993)

Pillar-Orloci
gT W2 k,22 O

N nk51 k

Pillar and Orloci (1996)

NPMANOVA

gT W2 k,2(N 2 g) 2 O1 2N nk51 k

g Wk,2(g 2 1) O
nk51 k

Anderson (2001)

Notes: All statistics are functions of Wk,r , the sums within group k of distances raised to the
power of r, and Tr , the sum across all samples of distances to the power of r. R(W ) and R(T )
refer to sums of ranks of distances. There are nk samples in the kth group.

† All acronyms were suggested in their original references: MRPP 5 multiresponse per-
mutation procedure, AMOVA 5 analysis of molecular variance, ANOSIM 5 analysis of sim-
ilarities, NPMANOVA 5 nonparametric multivariate analysis of variance.

‡ The Mantel statistic requires a second distance (or similarity) matrix, chosen in this case
to take the value 0 between samples of different groups, and ck between samples in the k th
group.

§ For MRPP, values of ck and r must be chosen to calculate a test statistic. It is recommended
in Mielke and Berry (2001) to use r 5 1 and ck } nk or ck } nk 2 1.
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TABLE A2. Variable-based statistics for one-factor MANOVA tests. Statistics from (a) lit-
erature outside ecology and (b) the ecology literature.

Name Statistic Reference

a) From literature outside ecology

logFO p (N 2 g)(SS 2 SS )j,0 j,1
logO [ ](g 2 1)SSj51 j,1

Edgington (1995: 188)

FO p (N 2 g)(SS 2 SS )j,0 j,1O
(g 2 1)SSj51 j,1

Edgington (1995: 188)

Edgington3

p

(N 2 g) (SS 2 SS )O j,0 j,1
j51

p

(g 2 1) SSO j,1
j51

Edgington (1995: 189–190)

Ward’s E
p

SSO j,1
j51

Romesburg (1985)

b) From ecology literature

RDA and CCA†

p

(N 2 g) (SS 2 SS )O j,0 j,1
j51

p

(g 2 1) SSO j,1
j51

ter Braak and Smilauer (1998:
47)

LR-IND‡
p SSj,0

N logO 1 2SSj51 j,1

this paper

Notes: These are all functions of SSj,0 and SSj,1, the residual sum of squares of the jth variable,
under H0 and H1, respectively (see Eq. 1).

† RDA 5 redundancy analysis; CCA 5 canonical correspondence analysis. The test statistic
for CCA uses the residual sums of squares from weighted least squares on the transformed
variable , with the weight of the ith sample being yi (where py9 } y /(y y ) y 5 S y ,Ïij ij i . . j i . j51 ij

).Ny 5 S y. j i51 ij

‡ LR-IND 5 likelihood-ratio test, assuming independence of variables.

APPENDIX B

Tables showing P values and power-simulation results for each of the 19 data sets are available in ESA’s Electronic Data
Archive: Ecological Archives E085-023-A1.


