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Nestedness has been widely reported for both metacommunities and networks of interacting species. Even though the
concept of this ecological pattern has been well-defined, there are several metrics by which it can be quantified. We noted
that current metrics do not correctly quantify two major properties of nestedness: (1) whether marginal totals (i.e. fills)
differ among columns and/or among rows, and (2) whether the presences (1’s) in less-filled columns and rows coincide,
respectively, with those found in the more-filled columns and rows. We propose a new metric directly based on these
properties and compare its behavior with that of the most used metrics, using a set of model matrices ranging from
highly-nested to alternative structures in which no nestedness should be detected. We also used an empirical dataset to
explore possible biases generated by the metrics as well as to evaluate correlations between metrics. We found that
nestedness has been quantified by metrics that inappropriately detect this pattern, even for matrices in which there is no
nestedness. In addition, the most used metrics are prone to type I statistical errors while our new metric has better
statistical properties and consistently rejects a nested pattern for different types of random matrices. The analysis of the
empirical data showed that two nestedness metrics, matrix temperature and the discrepancy measure, tend to overestimate
the degrees of nestedness in metacommunities. We emphasize and discuss some implications of these biases for the

theoretical understanding of the processes shaping species interaction networks and metacommunity structure.

Ecologists have long searched for patterns and processes
related to species distribution among sites (e.g. islands,
hosts, fragments, resource patches) and to interspecific
interactions in communities. Nestedness is a particular
ecological pattern widely reported for species occurrences in
metacommunities (Patterson and Atmar 1986, Wright and
Reeves 1992, Cutler 1991, 1994, Wright et al. 1998) and
species interaction networks (Bascompte et al. 2003,
Dupont et al. 2003, Ollerton et al. 2003, 2007, Guimaraes
et al. 2006, 2007a, Lewinsohn et al. 2006, Burns 2007). In
metacommunities, nestedness is found when sites with
lower species richness tend to harbor proper subsets of those
species present in richer sites (Darlington 1957, Atmar and
Patterson 1993). Differences in habitat features such as
isolation, size, quality and nested habitats, or in species
attributes such as area requirements, abundance and
tolerance to abiotic factors are the major explanations for
the emergence of nestedness in metacommunities (Darling-
ton 1957, Atmar and Patterson 1993, Andrén 1994, Cutler
1991, 1994, Lomolino 1996, Wright et al. 1998, Hylander
et al. 2005, Higgins et al. 2006). For networks of species
interactions, nestedness occurs when specialist species tend

to interact with proper subsets of the species that interact
with more generalist species (Bascompte et al. 2003,
Jordano et al. 2006). The major hypotheses about the
emergence of nestedness in interaction networks involve
differences in abundance of interacting species (Lewinsohn
et al. 2006), higher extinction rates for specialists that
interact with other specialists (Ollerton et al. 2003) or the
convergence and complementarity of traits among a set of
species (Thompson 2005, Guimardes et al. 2006, Santa-
marfa and Rodriguez-Gironés 2007).

Nestedness is usually represented and measured using
binary data through presence-absence matrices. In order to
avoid terminological misunderstandings, we use the com-
mon jargon related to the presence—absence matrix repre-
sentation instead of terms specifically related to
metacommunities or interaction networks. Matrix proper-
ties and their ecological meaning for metacommunities and
interaction networks are presented in Table 1.

Nestedness by itself is not a metric, but a concept
originally applied to a metacommunity structure in
which the species present in species-poor sites constitute
proper subsets of those ones present at species-rich sites
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Table 1. Matrix properties and their ecological meaning in studies considering metacommunities or species interaction networks.

Matrix property Metacommunities

Species interaction networks

No. of columns

No. of rows

Size =no. columns+no. rows
Fill =sum of 1’s/sum of cells
Shape =smaller set/larger set

Undefined
Undefined

Regional richness or gamma-diversity
Number of sites or local samples
Study range (no. of sites+no. of species)

Species richness of group A (e.g. plants)
Species richness of group B (e.g. animals)
Total species number

Connectance

Ratio between species groups

(Darlington 1957). Its concept has not been formally
defined through mathematical relationships, but instead
by means of verbal statements about the arrangement of
species among communities (or interactions among spe-
cies). Perhaps for this reason, although there is relative
consensus on the meaning of nestedness, there are several
distinct metrics by which it can be measured (Patterson and
Atmar 1986, Wright and Reeves 1992, Atmar and
Patterson 1993, Cutler 1991, 1994, Lomolino 1996,
Wright et al. 1998, Brualdi and Sanderson 1999, Cam et
al. 2000, Hausdorf and Hennig 2003). To be consistent
with the definition of nestedness, a given metric should
quantify: (1) whether marginal totals (i.e. fills) among
columns and/or among rows differ, and (2) whether the
presences (i.e. 1’s) in less-filled columns and rows overlap,
respectively, with those found in the more-filled columns
and rows.

In this paper, we highlight some critical inconsistencies
between current metrics used to quantify nestedness and the
concept of the nested subset pattern. We propose a new
metric that matches with the concept of nestedness and
compare its behavior with that of other metrics through

analysis of model matrices ranging from highly-nested
structures to alternative structures in which no degree of
nestedness should be detected. In addition, we perform a
test to verify whether the new metric correctly detects
randomness in non-nested matrices. Finally, we use an
empirical dataset to evaluate whether three popular metrics
over- or underestimate the degree of nestedness in real
ecological systems.

Methods
Nestedness metrics

Currently, the most used metrics to quantify nestedness are:
(1) T, the matrix temperature measure (Atmar and Patterson
1993); (2) C, a standardized version of the N¢ metric
(Wright and Reeves 1992); and (3) d, the discrepancy
measure proposed by Brualdi and Sanderson (1999).

T has been the most used metric and quantifies
whether the observed arrangement of 1’s and 0’s deviates
from the arrangement given by an isocline that describes a
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1 1 0 0 0 1 1 0 0 o0 1 1 0 0 o0
\ 2 L AC XK
1110,(/ 1 0 1 1 1 11 1“
101,1/1 1 1 1 0o o 1 1 1 0 o0
11/0’00 0 1 1 1 o 1 1“0
0/1/110 1 1 0 0 o 1 1 0 0 o0
” 1 0 o0 o0 1 1 0 0 0O 1 1 0 0 o0
/
6 6 3 1 0

Figure 1. Illustration of the way by which T, C and d1 rearrange 1’s and 0’s in original (superior) matrices to produce a new arrangement
(inferior matrices) and/or perform their calculations. (A) arrangement of 1’s and 0’s given by the algorithm in NTC (Atmar and Patterson
1995). The dashed line represents the isocline of ‘perfect order’. All 1’s below the isocline and all 0’s above it configure unexpected
presences and absences, respectively, in relation to a perfectly nested matrix. (B) calculation algorithm of the metric Nc. Values below
each column are given by all possible paired combinations between 1’s within each column, i.e. marginal total x (marginal total — 1)/2.
The sum of these values is Nc. (C) a perfect nested matrix according to the discrepancy metric. The discrepancy value of the upper matrix
is 2 because there are two 1’s positions that should be reallocated within rows to produce the lower matrix.
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perfect nestedness benchmark (Fig. 1A). Contributions of
unexpected absences and presences in the upper-left and
bottom-right sides, respectively, are weighted by their
squared Euclidian distances from the isocline. Recently,
Almeida-Neto et al. (2007) clarified that T is not a
measure of disorder, as some authors have pointed out,
because random distributions of 1’s tend to produce
intermediate rather than maximal T-values. Further de-
scriptions and details on this metric can be found in
Wright et al. (1998), Greve and Chown (2006), Rodri-
guez-Gironés and Santamaria (2006), Ulrich (2006a) and
Ulrich and Gotelli (2007a).

The metric C is a standardized version of N, which was
originally defined as ‘the number of times that a species’
presence at a site correctly predicts its presence at richer
sites’ (Wright and Reeves 1992). According to Wright and
Reeves’s (1992) definition, N¢ is also equal to the sum of
the number of species shared across all unique pairs of sites.
Following our matrix terminology (Table 1), N is a count
of the number of times in which 1’s are correctly predicted
by other 1’s from equally- or more-filled rows of the same
column. In Fig. 1B, for example, the cell located at row 5
and column 1 (as; =1) is correctly predicted by cells a4y =
ay; =aj; =1, but not by a3; =0. For a given column j, the
number of correct predictions varies between zero and
m(m —1)/2, in which m is the number of 1’s in a column.
Consequently, column j=1 has 6 correct predictions,
whereas column j =5 has no correct prediction. Therefore,
unlike T, C is a metric developed to quantify nestedness
exclusively between rows. The standardization of N¢ is

defined as:

NC — E{NC}

= ; (1
max{NC} — E{NC}

where E{N¢} and max{N¢} are the expected and the
maximum value of N, respectively. E{N¢} is given by a
mean value obtained through a set of randomized matrices
produced according to the null model of equiprobable
distribution of 1’s (but see Bloch et al. 2007 for other null
models), and max{N¢} is the value that N would take if
the matrix were perfectly nested (sensu Atmar and Patterson
1993). Since the expected N value is based on a
randomization procedure, values of C that are close to
zero indicate that the number of correct predictions of 1’s is
virtually the same as that given by the selected null model.
C computes negative values for matrices less-nested than
expected by chance, whereas positive values indicate some
degree of nestedness.

Discrepancy (d) is the number of 1’s that must be
reallocated within rows or columns to produce a perfectly-
nested matrix (Brualdi and Sanderson 1999). In Fig. 1C,
the ‘1 at cell a;5 =1 can be reallocated, leading to a;5 =0
and a;; =1, and the ‘1" at the cell az4=1 can be
reallocated, leading to azs =0 and az; =1. Thus, this
matrix has d =2. A first standardized version of this metric,
similar to that for N¢, was originally developed by Brualdi
and Sanderson (1999). More recently, Greve and Chown
(2006) proposed three additional standardizations for d,

namely d0, d1 and d2. Here we used d1 (= d/matrix fill)
because there is evidence that this metric behaves more
consistently (Greve and Chown 2006). Note that the N,
and d treat rows and columns differently. They are therefore
not invariant to matrix transposition.

The new metric

Our nestedness metric is based on two simple properties:
decreasing fill (or DF) and paired overlap (or PO). Let us
assume that in a matrix with m rows and n columns, row i is
located at an upper position from row j, and column k is
located at a left position from column 1. In addition, let MT
be the marginal total (i.e. the sum of 1’s) of any column or
row. For any pair of rows i and j, DF;; will be equal to 100
if the MT; <MT;. Alternatively, DF;; will be equal to 0 if
MT; >MT;. Likewise, for any pair of columns k and I, DFy
will be 100 if MT; <MT), and will be equal to 0 if MT; >
MT,.

For columns, paired overlap (POy) is simply the
percentage of 1’s in a given column | that are located at
identical row positions to those in a column k. For rows,
POj; is the percentage of 1’s in a given row j that are located
at identical column positions to the 1’s observed in a row i.
For any left-to-right column pair and, similarly, for any up-
to-down row pair, there is a degree of paired nestedness
(Npaired) as follows:

if DF
if DF

paired — 0’ then Npaired =0;

=100, then N =PO;

paired paired

From the n(n —1)/2 and m(m —1)/2 paired degrees of
nestedness for n columns and m rows, we can calculate a
measure of nestedness among all columns (N,,j) and among
all rows (N,,,,) by simply averaging all paired values of
columns and rows.

Finally, the measure of nestedness for the whole matrix is
given by:

Z Npaired .

n(n — 1) m(m — D]’
+

S M
in which NODF is an acronym for nestedness metric based
on overlap and decreasing fill. Figure 2 illustrates how the
new matric performs. Two basic properties are required for
a matrix to have the maximum degree of nestedness
according to our metric: (1) complete overlap of 1’s from
right to left columns and from down to up rows, and (2)
decreasing marginal totals between all pairs of columns and
all pairs of rows. A matrix with these two properties has
approximately 50% of fill and was termed by Atmar and
Patterson (1993) a maximally informative nested structure.
It is important to note, however, that if the aim is to
quantify nestedness exclusively among columns or among
rows, the unique requirement to perfect nestedness is a

continuous decrease in the marginal totals from left to right
(for columns) or from up to down (for rows).

NODF = (2)
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paired Ncolumns = 63

Npalred:50 NI’OWS = 53

Npaired=50 NODF =58
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Figure 2. Illustration of the way by which nestedness is quantified according to NODF. First, we calculated the paired nested degree for
each pair of column and for each pair of row. Then, the total nestedness among columns was quantified as the average values for all pairs
of columns. The total nestedness among rows follows the same procedure applied for columns. Finally, the degree of nestedness for the
whole matrix is calculated as the sum of all values of paired nestedness divided by the total number of pairs (i.e. the sum of all

combinations of pairs of column and pairs of rows).

NODF has some important features that distinguish it
from the precedents metrics. One of its most important
features is that it calculates nestedness independently among
rows and among columns, which allows evaluating nested-
ness only among sites (i.e. species composition) or only
among species (i.e. species occupancy). Another important
feature is its versatility to evaluate how nested is one or
more columns (or rows) in relation to other ones. This can
be easily accomplished including only the columns or rows
of interest. For instance, to evaluate whether columns c2 to
c5 have proper subsets of the elements present in column c1
in the Fig. 2, we only need to calculate the mean paired
nested between cl and the other columns (NODF =53).
The procedure to evaluate whether a given column is nested
within a set of columns located at its left side is virtually the
same. The column ¢l in the Fig. 2 has NODF =85 in
relation to the four columns located at its right side. These
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properties of our new metric can be used to examine
individual contributions of each column (or row) to the
general nested pattern. Finally, it is important to highlight
that NODF was thought to be dependent on the arrange-
ment of columns and rows to allow testing hypotheses on
the causes of nestedness by ordering columns and rows
according to any reasoned criteria instead of only by the
marginal totals.

Consistency with the concept of nestedness

We evaluated the consistency of T, C, d1 and NODF with
the usual concept of nestedness using model matrices.
Given that values of C and NODF increase with nestedness,

whereas values of T and d1 decrease with nestedness, we
used NT =100 —T and Nd1 =(1 —d1)100. It does not



Random Perfect nestedness

Nestedness pattern Nestedness pattern

(fill=50%) among columns minimally filled maximally filled
(fill=51%) (fill=22%) (fill=99%)
11 1 1 1 1 o S S S Y o N Y N N o N Y N
11 1 1 1 0 111 1 10 10 0 0 0 O o N N N
01 1 1 1 0 111 1 10 10 0 0 0 O o Y N
11 1 1 0 0 111 1 0 0 10 0 0 0 O o N Y N
00 1 1 10 111 10 0 10 0 0 0 O o N S N
11 0 1 0 0 111 1 0 0 10 0 0 0 O o Y N
11 0 0 0 1 111 0 00 10 0 0 0 O o Y S
1110 0 0 1110 0 0 10 0 0 0 O o N Y N
00 0 1 1 1 111 0 00 10 0 0 0 O o N S N
10 1 0 0 0 110 0 0 O 10 0 0 0 O o N N N
00 0 0 1 1 110 0 0 O 10 0 0 0 O o S
10 1 0 0 0 110 0 0 O 10 0 0 0 O o N S N
10 0 1 0 0 10 0 0 0 O 10 0 0 0 O o N Y N
01 1 0 0 0 100 0 0 O 10 0 0 0 O o N S N
01 00 0 O 10 0 0 0 O 10 0 0 0 O 11 11 1 0
Checkerboard Compartmented Beta-diversity Exclusive subsets
(fill=50%) (fill=33%) (fill=19%) (fill=20%)
10 1 0 1 0 11 0 0 0 O 10 0 0 0 10 0 0 O
01 0 1 0 1 110 0 0 O 10 0 0 O 10 0 0 0
10 1 0 1 0 110 0 0 0 10 0 0 O 10 0 0 O
01 0 1 0 1 110 0 0 O 01 0 0 0 10 0 0 0
10 1 0 1 0 110 0 0 O 01 0 0 O 10 0 0 0
01 0 1 0 1 0 01 1 0 0 01 0 0 O 01 0 0 0
10 1 0 1 0 001 1 0 0 00 1 0 O 01 0 0 0
01 0 1 0 1 0 01 1 0 0 0 01 00 01 00 0
10 1 0 1 0 0 01 1 0 0 0 0 1 0O 01 0 0 O
01 0 1 0 1 0 0 1 1 0 0 00 0 1 0 0 01 0 0
10 1 0 1 0 00 0 0 1 1 00 0 1 o0 0 0 1 0 0
01 0 1 0 1 00 0 0 1 1 00 0 1 0 0 01 00
10 10 1 0 00 0 0 1 1 0 0 0 0 1 00 01 0
01 0 1 0 1 00 0 0 1 1 00 0 0 1 0 0 0 1 0
10 1 0 1 0 00 0 0 1 1 0 0 0 0 1 0 0 0 0 1

Figure 3. Matrix representations of four models with some level of nestedness among columns and rows (above) and four models with no
nestedness among columns and rows (below). All models have similar dimensions (5-6 columns and 15 rows).

make sense to convert C to a percentage scale because this
metric is null model dependent and does not have
minimum and maximum absolute values as T, d1 and
NODF. Even so, we multiplied C values by 100 to facilitate
comparison with the other metrics.

We assessed whether each metric quantified nestedness
in four model matrices with some nested structure: (1)
‘Random’; (2) ‘Perfect nestedness among columns’, in
which all columns have distinct fills but some rows were
identical; (3) ‘Nested pattern minimally filled’, in which
there is only a fully filled column and a fully filled row; and
(4) ‘Nested pattern maximally filled’, in which only the cell
located in the bottom-right corner is not filled (Fig. 3). In
addition, we used another four model matrices in which no
degree of nestedness should be found (at least among
columns), according to the definition of nestedness: (1)
‘Checkerboarding’, in which 1’s have 0’s in all diagonally
neighboring cells; (2) “Perfectly compartmented model’,

constituted here by three subsets; (3) ‘Beta-diversity’, a
model in which there is no overlap between columns; and
(4) ‘Exclusive subsets’, based on the “anti-nestedness”
model proposed by Poulin and Guégan (2000), in which
there is decreasing fill among all column pairs (but see
Almeida-Neto et al. 2007). For convenience and to allow
illustration, we used matrices with 5 or 6 columns and 15
rows (Fig. 3). For the ‘random’ model, we used the mean
level of nestedness based on 30 matrices to produce a
representative value instead of a value for a given matrix.
Because T, C and d1 are sensitive to matrix transposition,
we performed all the calculations for the models depicted in
Fig. 3 and for their transposed matrices.

Diagnostic tests

Ideally, a metric for nestedness should not be affected by
matrix size or shape. Furthermore, although the quantifica-
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tion of nestedness is intrinsically related to matrix fill, type I
and type II errors rates should not be affected by matrix fill,
shape or size. We evaluated whether NODF, NC, NT and
Nd1 were related to matrix size, shape and fill by generating
matrices in which occurrence probabilities per cell were
drawn from a uniform random distribution (equivalent to
the equiprobable row and column null model) and in which
only the variable of interest (size, shape or fill) was allowed
to vary. For matrix size, we used square matrices to compare
the degree of nestedness for 100 random matrices for each
one of the following numbers of cells: 25, 100, 400, 900,
1600 and 2500. To evaluate the relationship between
matrix shape and degree of nestedness, we created 100
random matrices for each one of the following ratios of
columns to rows: 30/30, 25/35, 20/40, 15/45, 10/50 and
5/55. For matrix size and shape, we used 600 matrices with
approximately 50% of fill. Finally, we examined whether
matrix fill was related to the degree of nestedness by
generating 1000 matrices with 30 columns and rows with
matrix fill ranging from 5 to 95%. In addition to inspection
of the absolute values of nestedness we also calculated a
standardized effect size (SES) as a Z-transformed score (Z =
[x —p]/o) to compare the observed index to the distribu-
tion of simulated indices (x =observed index value, p =
mean, 6 =standard deviation of the 100 index values from
the simulated matrices). By using Z-scores we evaluated
whether type I errors rates were affected by the three above-
cited matrix properties.

To evaluate whether the new metric correctly identified
null matrices as being random, we used a procedure similar
to that recently employed by Ulrich and Gotelli (2007a).
We created 200 matrices by sampling individuals randomly
from a set in which population sizes of the ‘species’ were
distributed according to a lognormal species—rank order
distribution:

§ = Syel Tt 3)

in which S is the number of species per log,(abundance
class R), Sg is the number of species in the modal class R,
and a is the shape-generating parameter. Individuals were
randomly sampled, and column totals m; (i.e. species
number per site) were held nearly constant (randomly
taking m;, m;+1, or m; —1 species). For each matrix, the
shape-generating parameter a was sampled from a uniform
random distribution between 0.1 and 0.5 (a canonical
lognormal distribution has a=0.2; May 1975). Total
numbers of rows m and columns n per matrix were also
sampled from uniform random distributions (3 <m <200
and 3 <n <50). Matrices produced by this sampling
protocol cannot be more nested than expected by chance
because a large fraction of their columns have identical
marginal totals.

Statistical significance was assessed by the 95% con-
fidence intervals produced by two null model algorichms
that span the range of possibilities from very conservative
to very liberal: FF (fixed row—fixed column) and EE
(equiprobable row totals, equiprobable column totals).
The FF algorithm preserves both the row and column
totals in the original matrix (Connor and Simberloff 1979,
Gotelli 2000) but randomizes the internal structure
through a variation of the ‘sequential swap algorithm’
(Manly 1995, Gotelli and Entsminger 2001). When
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matrices are extremely nested or have nearly a checker-
board pattern, the fixed-fixed model will actually fail
because there are too few or even no matrix re-arrange-
ments possible that will simultaneously preserve row and
column totals. The EE algorithm preserves the total
number of species occurrences in the original matrix but
allows both row and column totals to vary freely (Gotelli
2000). This algorithm retains the least of the original
matrix structure and is prone to type I errors in nestedness
analyses (Wright et al. 1998, Gotelli 2000, Ulrich and
Gotelli 2007a, 2007b).

Nestedness in empirical matrices

In a third approach we evaluated the relationship between
the four metrics using the empirical dataset compiled by
Atmar and Patterson (1995). Only matrices with at least
three columns and rows were used (n =287 matrices). We
performed the Wilcoxon signed rank test to compare the
degree of nestedness calculated by NT, Nd1 and NODE. C
was not included in this analysis because it is standardized
through a null model and, consequently, can produce
negative values. As NODF can be used to quantify
nestedness only among columns and only among rows,
we also evaluated: (1) whether more endemic species
occupied a subset of the sites where more widespread
species were found, and (2) whether species-poor sites had
proper subsets of the species found in more species rich
ones. This second metacommunity feature is what most
nestedness metrics aim to quantify. However, T measures
whether 1’s are located at the upper-left side of a matrix,
and it cannot distinguish the two above cited metacommu-
nity features. On the other hand, measures based on Brualdi
and Sanderson’s (1999) discrepancy and Nc quantify
nestedness only among columns or rows.

Null models, simulated matrices and nestedness mea-
sures were generated and calculated by the software
applications Aninhado (Guimaraes and Guimaraes 2006
<www.guimaraes.bio.br >), Cooc (Ulrich 2007), Nested-
ness (Ulrich 2006a), Matrix (Ulrich 2006b), and Nested-

ness programme (Acknowledgments).

Results
Model matrices

The four metrics showed clear differences in their degrees of
nestedness for identical model matrices (Table 2). For the
random model depicted in Fig. 3, the mean degree of
nestedness ranged from 0 for NC to 68 for Nd1, whereas
both NT and NODF had values about 50. The analysis of the
three nested matrices depicted in Fig. 3 demonstrated that T,
C, and d1 do not discriminate a nested structure in which fill
is minimum from others in which fill is maximum (Table 2).
More troubling, however, was that both T and d1 quantified
some degree of nestedness for structures in which nestedness
does not actually exist, whereas C showed negative values for
all but one non-nested structure (Table 2). Only NODF
consistently revealed that these structures have no degree of
nestedness (Table 2).



Table 2. Nestedness of the matrices illustrated in Fig. 3 obtained by NT, NC, Nd1 and NODF.

Matrix model

Nestedness metric

NT NC Nd1 NODF

Original  Transpose  Original ~ Transpose Original Transpose Rows Columns Total
Random 52 53 0 0 67 68 51 49 50
Perfect nestedness among columns 98 98 100 100 100 100 88 100 91
Nested pattern minimally filled 99 99 100 100 100 100 13 33 16
Nested pattern maximally filled 99 99 - - 100 100 13 33 16
Checkerboard 12 9 —70 —20 51 47 0 0 0
Compartmented 10 8 —70 —20 33 33 0 0 0
Maximum beta-diversity -2 -7 -7 —25 20 20 0 0 0
Exclusive subsets 38 34 1 —40 33 33 0 0 0

Simulated matrices

For our first type of random matrices, degrees of nestedness
obtained by NODF were strongly related to matrix fill with
a peak at around 90% fill. However, the metric is unrelated
to matrix shape and size (Fig. 4A—C). NT and Nd1, on the
other hand, were highly sensitive to variation in matrix
shape and matrix size, but only Nd1 showed a monotonic
increase with fill (Fig. 4D-I). For NT, 95.7% of the
variance of its relationship with matrix fill can be explained

by a quadratic fit. Thus, T is also highly dependent on
matrix fill.

Unlike their absolute values, the Z-scores of the four
metrics obtained through the EE null model were only
related to matrix fill (Fig. 5). In turn, Z-scores obtained
through the FF null model were only slightly sensitive or
even invariant to matrix fill, size and shape (Fig. 6). NODF
correctly identified randomness for 93% and 99.5% of the
non-nested matrices through the EE and the FF null
models, respectively.
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Figure 4. The dependence of the absolute values of nestedness measured by NODF (the new metric proposed here; (A)—(C), NT (matrix
temperature; (D)—(F), and the Nd1 (a standardized version of the discrepancy measure, (G)—(H) on matrix fill, matrix shape and matrix
size. We generated 1000 matrices for matrix fill and 600 matrices for matrix shape and size. The values in the bottom-right corner of the
graphics are the Spearman’s correlation coefficients. See details in Methods.
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Empirical matrices

The degrees of nestedness produced by the four metrics
were moderately to strongly positively correlated (Fig. 7).
NODF showed strong correlations with Nd1 and NC and a
moderate correlation with NT (Fig. 7). Conversely, NT
had the lowest bivariate correlations and higher point
dispersions in their scatterplots. However, the distributions
of their values were clearly distinct (Fig. 7)

According to our new metric, most empirical matrices
have degrees of nestedness between 40 and 70 (Fig. 7).
Degtees of nestedness according to NODF were lower than
those calculated using NT (Z = —8.37, p <0.001) and
Nd1 (Z = —8.83, p<0.001). NT also produced higher
degrees of nestedness when compared to Nd1 (Z = —2.06,
p <0.039). Respectively, 92.3% and 99.6% of the empirical
matrices examined by NT and Nd1 had higher degrees of
nestedness than NODF. These differences were similar

1234

when degrees of nestedness obtained by NT and Nd1 were
compared to NODF only among sites and only among
species occupancy (p <0.001 for the four comparisons).
NODEF identified 237 of the 287 empirical matrices as being
significantly nested under the EE null model. On the other
hand, under the FF null model NODF identified only three
empirical matrices as being nested. NODF also indicated
that nestedness in species occupancy (mean =54.0) is
significantly lower than nestedness in species composition
among sites (mean =60.6; Z = —9.25, p <0.001).

Discussion
Why another metric?

The occurrence of nestedness in ecological systems provides
clues about the processes that affect species distributions
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among different sites and that shape interspecific interac-
tions (Lomolino 1996, Leibold and Mikkelson 2002,
Thompson 2005, 2006, Lewinsohn et al. 2006, Guimaraes
et al. 2007b). In addition, its quantification can be used to
guide conservation strategies (Atmar and Patterson 1993,
Cutler 1991, 1994, Boecklen 1997) and to understand
the fragility and co-evolution of networks of ecological
interactions (Thompson 2005, 2006, Jordano et al. 2006).
Therefore, it is fundamental to measure such structure
propetly. Given that several metrics and computational
programs are currently available (Cutler 1991, 1994, Atmar
and Patterson 1995, Lomolino 1996, Wright et al. 1998,
Brualdi and Sanderson 1999, Hausdorf and Hennig 2003,
Guimardes and Guimardes 2006, Rodriguez-Gironés and
Santamaria 2006, Ulrich 2006a), why should someone use
a new nestedness metric?

Here, we showed that current metrics are not sufficiently
in accordance with the intuitive concept of nestedness as it
was described above and understood by most authors
(Atmar and Patterson 1993, Cutler 1991, 1994, Lomolino
1996, Wright et al. 1998, Brualdi and Sanderson 1999).
The aim of any nestedness metric is to quantify whether a
given arrangement of presences and absences deviates or
approximates from a perfectly nested pattern. They differ
basically because (1) they measure distinct matrix properties
(e.g. unexpected absences or holes, unexpected presences or
outliers, and overlaps), and/or (2) they give different

weights to these properties. However, the root of the
inconsistencies found in the current metrics is associated
with what these metrics consider to be a perfect nested
pattern. Although most authors have explicitly pointed out
what they mean by a nested pattern, what current metrics
quantify is whether a matrix deviates from its own
maximum degree of nestedness (Fig. 1) instead of from
an independent maximum benchmark given by the two
basic properties derived from the concept of nestedness:
decreasing marginal totals, and paired overlaps. This is the
reason why nested patterns with maximum fill or minimum
fill have maximum nestedness according to T, C and d.
Actually, it also occurs with the number of departures (D)
proposed by Lomolino (1996), with the metrics Ny
(Patterson and Atmar 1986) and N; (Cutler 1991), and
with the measures based on unexpected absences and/or
presences (Cutler 1991, Wright et al. 1998). Another
inconsistency stemming from the relativization of the
perfect nested benchmark is that these metrics implicitly
assume that a column (or row) can be nested within another
equally filled column (or row). For instance, a metacom-
munity characterized by few species-rich sites and a number
of species-poor sites with identical species compositions is
highly nestedness according to current metrics. Similarly, a
metacommunity characterized by several ‘fully-filled’ (i.e.
with identical species compositions) sites and a few species-
poor sites with distinct species composition also is highly
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nested according to current metrics. Thus, current metrics
are not capable of distinguishing a perfectly nested matrix
from a poorly nested one.

In their paper introducing C, Wright and Reeves (1992)
pointed out that nestedness ‘occurs when the species present
at sites inhabited by fewer species tend to be subsets of the
biotas of richer sites’. However, C also counts the number
of times in which a species’ presence correctly predicts its
presence at equally rich sites (Wright et al. 1998). Along
similar lines, Atmar and Patterson (1993) made a clear
distinction between nested structures with maximum
decreasing fill, which they called maximally informative
matrix, and minimum decreasing fill, which they called ‘all-
white matrix’ (Fig. 1 and 2 in Atmar and Patterson 1993).
However, their metric T does not account for this
important distinction. Rodriguez-Gironés and Santamaria’s
(2006) method, implemented in the BINMATEST pro-
gram, differs from the algorithm used in the NTC only by
the packing of the matrix (i.e. the arrangement of columns
and rows to produce the lowest temperature), and by a
modification of the isocline of perfect order. Thus this
alternative procedure to calculate T also produces some
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degree of nestedness for the non-nested matrices illustrated
in the Fig. 3 and does not solve the problem of
inconsistency with the concept of nestedness.

Although apparently trivial, when metrics give some
degree of nestedness for pairs of columns or rows with
identical marginal totals, they tend to produce higher
degrees of nestedness in cases in which nestedness is actually
low, as observed here for the empty and the full nested
models (Fig. 3, Table 2) and for the empirical dataset (Fig.
7). Another undesirable property of the metrics T, d and C is
that they can produce distinct degrees of nestedness
depending on which set (e.g. sites or species) is represented
by columns and rows (Table 2). This is especially proble-
matic for studies that aim to quantify nestedness simulta-
neously for columns and rows, as most studies on interaction
networks do (Bascompte et al. 2003, Dupont et al. 2003,
Ollerton et al. 2003, Guimaraes et al. 2006, 2007a, 2007b).

The metric introduced here is directly based on the
concept of nestedness, and consequently, it does not
indicate nestedness in matrices in which there is no paired
nested structure between columns and/or between rows

(Table 2). On the other hand, the results showed in Table 2



Table 3. Some characteristics of the four metrics for nestedness evaluated in this study. The three ‘yes or no’ answers for size, shape and fill
correspond, respectively, to: (1) the absolute values calculated by each metric; (2) Z-scores under the equiprobable null model, and (3). Z-

scores under the fixed-fixed null model.

Does the metric

Nestedness metric

T C d1 NODF

depend on matrix fill?

yes/yes/no yes/yes/— yes/yes/no yes/yes/no

depend on matrix shape? yes/no/no  no/no/~  yes/no/no  no/no/no
depend on matrix size? yes/no/no  no/no/~  yes/no/no  no/no/no
depend on which set is represented in columns or rows? yes yes yes no
measure whether a particular column/row is nested within any set of columns/rows? no no no yes
measure whether any set of column/row is nested within a particular column/row? no no no yes
disentangle nestedness among columns from nestedness among rows? no no no yes

confirm that T, C and d calculate some degree of nestedness
for matrix structures where, clearly, no nestedness should be
detected. In addition, NODEF quantifies nestedness for
columns and for rows independently, allowing thus to
evaluate whether and how columns and rows contribute
to whole-matrix nestedness (Table 2, 3). Since most studies
on metacommunities propose to test nestedness only among
species composition or among species occupancies, the
ability to discriminate these nestedness components is
essential because it allows evaluating whether nestedness
results from differences among sites and among species
(Results on empirical matrices). In studies on species
interaction networks, this property can be used to evaluate,
for instance, the contribution of animals and plants to
overall nestedness.

Diagnostic tests of the new metric

Our analyses on the relationship between matrix properties
(fill, shape and size) highlight some important unexplored
aspects of the behavior of current nestedness measures.
NODF seemed to be sufficiently insensitive to matrix shape
and matrix size, whereas both NT and Ndl showed
considerable dependence on these properties (Fig. 4, Table
3). On the other hand, both NODF and Ndl were
positively correlated with matrix fill, and NT produced
lower degrees of nestedness at intermediate fills for random
matrices (Fig. 4; Rodriguez-Gironés and Santamaria 2006).
Matrix fill corresponds to the degree of species occupancy in
studies on metacommunities and to connectance in studies
on species interaction networks (Table 1). It is important to
note that the positive relationship between matrix fill and
the degree of nestedness is not an analytical artifact, but
simply a consequence of the concept of nestedness. Several
other important attributes of metacommunity structure
(e.g. beta-diversity, species occupancy and similarity in
species composition) or properties of interaction networks
(e.g. average path length, compartmentalization and degree
distribution) are also intrinsically related to matrix fill.
Although the relationship between Nd1 and matrix fill was
quite similar to that for NODF, the former differed when
fill approached 100% because the number of equally filled
columns and rows increased, and NODF produced zero
values for the degree of nestedness between pairs of equally
filled columns or rows. Given these results, we assert that
NODEF is clearly superior to NT and Nd1 when absolute
values of nestedness were used. When Z-scores instead of

absolute values were used to measure degree of nestedness,
we found that the four metric are virtually insensitive to
matrix shape and matrix size (Fig. 5, 6). On the other hand,
the four metrics were slightly sensitive to matrix fill under
EE, but not under FF. Fig. 5 shows that the four metrics
have inflated type I error rates when matrix fill is lower than
10%. Further studies have to clarify the relationships
between these features and nestedness.

The diagnostic tests to detect type I error rates associated
with  NODF showed that this new metric is more
conservative than those recently examined by Ulrich and
Gotelli (2007a). According to their analyses under the
fixed-fixed null model, between 93% and 96% of the
random matrices were correctly detected as not being
significantly nested according to the eight metrics used,
including T, N¢ and d. However, when the EE null model
was used, the correct detection of randomness ranged from
3% to 42%. The percentage of random matrices for which
randomness was correctly detected by NODF ranged from
99.5% under FF to 93% under the EE algorithm. Under
the fixed-fixed model, therefore, NODF is slightly superior
to the conventional metrics but it performs much better
under the equiprobable null model.

Nestedness in empirical metacommunities

Our analysis of empirical matrices compiled by Atmar and
Patterson (1995) showed that the degree of nestedness
obtained by NT, NC and Nd1 are significantly higher than
those calculated through NODEF. A simple possible
explanation for these differences is that a perfect nested
matrix according to NODF needs to have 50% of 1’s
whereas the other metrics adjust their maximum values for
the observed fill. However, this seems not be the case. These
differences were also verified when we measured NODF
exclusively for columns or for rows. Given that perfect
nestedness only for columns or for rows do not need to have
matrix fill close to 50%, the above mentioned analytical
explanation does not prevail. In fact, a probable reason for
these differences is the high number of columns and rows
with identical marginal totals in the empirical matrices.
These pairs of columns and of rows with identical marginal
totals have no degree of nestedness according to NODF,
but they can be perfectly nested according to the other
metrics.

We also showed that the degree of nestedness for species
composition is higher than that for species occupancy. We
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hypothesized that the higher number of species present in
one or two sites (endemics), as compared to the number of
sites with a small fraction of species, is one of the major
explanations for this pattern because there is no degree of
nestedness for pairs of columns or rows with identical
marginal totals.

Concluding remarks

There are a number of non-exclusive processes that can
generate nestedness both in metacommunities and ecologi-
cal networks, and these processes can be expressed across a
wide range of temporal and spatial scales. Therefore, by
using metrics that are not in agreement with the concept of
nestedness there is a risk of overemphasizing the relevance
of some ecological and evolutionary processes driving
ecological systems or of making poor predictions. For
instance, studies on interaction networks have predicted
that both robustness against random extinctions and
fragility against the loss of the most connected species
increase at higher degrees of nestedness (Memmott et al.
2004, Burgos et al. 2007). Although highly nested networks
are probably robust against random extinctions, they are
certainly much less sensitive to the loss of the most
connected species than truly scale-free networks (Dunne
et al. 2002, Jordano et al. 2003).

For future studies on nestedness, we suggest that authors:
(1) clarify whether they need to measure nestedness for the
whole matrix or only for columns or rows; (2) explore
whether nestedness is a general pattern of the community or
derives from some particular species subset, and (3) re-
evaluate their previous conclusions, particularly those based
on the matrix temperature, because this measure has several
drawbacks (Greve and Chown 2006, Rodriguez-Gironés
and Santamaria 2006, Ulrich and Gotelli 2007a) and is
barely correlated to other nestedness metrics.
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