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Abstract. The analysis of presence–absence matrices with ‘‘null model’’ randomization
tests has been a major source of controversy in community ecology for over two decades.
In this paper, I systematically compare the performance of nine null model algorithms and
four co-occurrence indices with respect to Type I and Type II errors. The nine algorithms
differ in whether rows and columns are treated as fixed sums, equiprobable, or proportional.
The three models that maintain fixed row sums are invulnerable to Type I errors (false
positives). One of these three is a modified version of the original algorithm of E. F. Connor
and D. Simberloff. Of the four co-occurrence indices, the number of checkerboard com-
binations and the number of species combinations may be prone to Type II errors (false
negatives), and may not reveal significant patterns in noisy data sets. L. Stone and A.
Robert’s checkerboard score has good power for detecting species pairs that do not co-
occur together frequently, whereas D. Schluter’s V ratio reveals nonrandom patterns in the
row and column totals of the matrix. Degenerate matrices (matrices with empty rows or
columns) do not greatly alter the outcome of null model analyses. The choice of an ap-
propriate null model and index may depend on whether the data represent classic ‘‘island
lists’’ of species in an archipelago or standardized ‘‘sample lists’’ of species collected with
equal sampling effort. Systematic examination of a set of related null models can pinpoint
how violation of the assumptions of the model contributes to nonrandom patterns.

Key words: assembly rules; checkerboard distribution; coexistence; community structure; com-
petition; co-occurrence; Monte Carlo simulation; null model; presence–absence matrix; randomization
test; species combinations.

INTRODUCTION

The presence–absence matrix is the fundamental unit
of analysis in community ecology and biogeography
(McCoy and Heck 1987). In such a matrix, rows are
species, columns are sites or samples, and entries are
the presence (1) or absence (0) of a species in a site.
Few issues in community ecology have been more con-
tentious than the statistical analysis of these data ma-
trices. Diamond (1975) described ‘‘checkerboard’’ dis-
tributions of avian species in the Bismarck Archipelago
that never co-occurred, and argued that these patterns
reflected community assembly rules. Connor and Sim-
berloff (1979) compared presence–absence matrices
with those generated by null models: Monte Carlo ran-
domizations of real data that produced the number of
checkerboards expected in the absence of biological
interactions (Gotelli and Graves 1996). Connor and
Simberloff (1979) found that patterns in many pres-
ence–absence matrices were similar to those generated
by null models, and they concluded that assembly rules
could not be inferred from the patterns. These analyses
touched off a debate on null models that has lasted over
20 years, with no end in sight (reviewed in Harvey et
al. 1983, Wiens 1989, Gotelli and Graves 1996).

I do not intend to defend here the philosophical basis
of null model analysis or to recount the ongoing con-
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troversy over its use (Gotelli and Graves 1996). In-
stead, I accept the necessity of confronting models with
data (Hilborn and Mangel 1997) and consider null mod-
els a useful statistical tool for this purpose. In this
paper, I systematically compare a number of null mod-
els for species co-occurrence patterns to data matrices
of known structure to address three questions:

1) What is the most appropriate null model algo-
rithm? Although most attention and controversy has
focused on the Connor and Simberloff (1979) algorithm
of randomizing matrices while simultaneously main-
taining row and column sums, a variety of null model
algorithms are possible (e.g., Jackson et al. 1992). I
compared the behavior of nine simulation algorithms
that range from those that incorporate almost no con-
straints to those that are highly constrained by the struc-
ture of the original data matrix.

2) What index should be used to summarize species
co-occurrence patterns? Once the null model simula-
tion has been completed, a single number is used to
summarize the pattern in the data. I compared four
indices, ranging from Pielou and Pielou’s (1968) early
use of the number of unique species combinations to
the more recent ‘‘checkerboard score’’ proposed by
Stone and Roberts (1990).

3) How susceptible are the different algorithms and
indices to Type I and Type II errors? In other words,
what are the chances that a random matrix produces a
statistically significant pattern (Type I error), and what
are the chances that a structured matrix produces a
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nonsignificant pattern (Type II error)? To answer these
questions, I tested each of the nine simulation algo-
rithms and four co-occurrence indices with matrices of
known structure. For Type I errors, the algorithms and
indices were tested against random matrices. For Type
II errors, the algorithms and indices were tested against
structured matrices that had increasing amounts of ran-
dom ‘‘noise’’ added (Gotelli et al. 1997).

METHODS

Presence–absence matrices

The data are organized as a presence–absence matrix
with i 5 1 to R rows and j 5 1 to C columns. Each
row represents a species and each column represents a
site or sample. Entry aij in the matrix represents the
presence (1) or absence (0) of species i in sample j.
Let Si equal the row total for row i, that is, the total
number of occurrences of species i across the sites. Let
Tj equal the column total for column j, that is, the total
number of species occurring in site j. Let N equal the
total number of all species occurrences in the matrix.
Thus:

C

S 5 aOi i j
j51

R

T 5 aOj i j
i51

R C R C

N 5 S 5 T 5 a .O O O Oi j i j
i51 j51 i51 j51

Null model procedures

All of the null model procedures described follow
the steps of classical statistical randomization tests (Ed-
gington 1987):

1) Condense model predictions from theoretical
ecology into a simple prediction about the structure of
a presence–absence matrix. For the entire body of clas-
sical MacArthur competition theory, the usual predic-
tion is that species co-occurrence is nonrandom and is
less than would be expected in a community in which
species colonized sites independently of one another
(Gotelli and Graves 1996).

2) Define an index X that describes, with a single
number, the co-occurrence pattern in a presence–ab-
sence matrix.

3) Measure Xobs for the observed data matrix.
4) Randomize the observed data matrix with a null

model and record Xsim for the randomized matrix.
5) Repeat step (4) many times (typically 1000) to

generate a frequency histogram of Xsim. This histogram
represents the range of values expected for Xobs given
that the null model is true. The histogram is a frequency
distribution for testing the null hypothesis that Xobs was
drawn at random from the distribution of Xsim.

6) Use classical methods of statistical inference to

interpret Xobs. The probability that Xsim 5 Xobs is the
frequency of Xsim in the histogram, that is, the frequency
of the bin located at Xobs in the histogram. Calculate
tail probabilities from the cumulative frequency of sim-
ulated observations # or $ Xobs. By convention and
tradition, accept the null hypothesis if 0.05 , P , 0.95,
and reject the null hypothesis if P exceeds these
bounds.

7) Use the results of the statistical test to evaluate
the original hypothesis. For some ecologists, this has
been the most controversial aspect of null model anal-
ysis (Gotelli and Graves 1996), but I will not consider
it further in this paper.

Selecting the co-occurrence index

I have analyzed the behavior of four indices that have
been proposed for the analysis of co-occurrence pat-
terns: (1) the number of species pairs forming perfect
checkerboards (CHECKER); (2) the checkerboard
score of the matrix (C score); (3) the variance ratio (V
ratio); (4) the number of species combinations (COM-
BO). Each of these indices is a single number that
summarizes co-occurrence patterns in a presence–ab-
sence matrix. Table 1 gives the details of how these
indices are calculated and what the expected results are
for a community that is structured by competition.

A universe of null models

Connor and Simberloff (1979) compared the ob-
served pattern in a presence–absence matrix to the pat-
tern present in random matrices that had the same row
and column totals as the original matrix. Retaining the
row and column totals preserves differences in species
richness among sites (column totals) and differences
in occurrence frequencies among species (row totals).
Some authors have argued that these constraints make
the null model overly conservative so that the null hy-
pothesis is accepted more often than it should be (Type
II error; Alatalo 1982, Diamond and Gilpin 1982, Gil-
pin and Diamond 1984; but see Connor and Simberloff
1983, 1984, 1986).

This is not the only way that row and column totals
can be treated in a null model of species co-occurrence.
If the sites are of similar size and quality (as in quadrat
samples), a better null hypothesis might be that the
sites (5columns) are equiprobable, so that the number
of species in a site (column total) is allowed to vary,
but all sites have the same average number of species.
A compromise algorithm between fixed column totals
and equiprobable columns would be to make the prob-
abilities of species placement proportional to the ob-
served column totals. This would allow column totals
to vary, as in the equiprobable model, but would reflect
observed differences among sites, as in the fixed sum
model. This sort of random model is similar to one in
which species passively colonize islands or ‘‘targets’’
of different area, as in Coleman et al.’s (1982) random
placement model for species richness. Similar reason-
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TABLE 1. Summary of four co-occurrence indices.

Index

CHECKER C score V ratio COMBO

Description Number of species
pairs forming per-
fect checkerboard
distributions

Checkerboard score Variance ratio Number of unique spe-
cies combinations

Calculation Scan matrix rows for
species pairs form-
ing checkerboards

S(Si 2 Q)(Sk 2 Q)/
((R)(R 2 1)/2)

s2(column sums)/
S row s2

Scan matrix columns
for unique species
combinations

Source Diamond (1975) Stone and Roberts
(1990)

Robson (1972);
Schluter (1984)

Pielou and Pielou
(1968)

Theoretical range 0 to R(R 2 1)/2 0 to S SiSk /
((R)(R 2 1)/2)

0 to ` 1 to 2R

Pattern expected
in a competi-
tively structured
community

Observed . simulated Observed . simulated Observed , simulated Observed , simulated

Comments Most readily testable
prediction of Dia-
mond’s (1975) as-
sembly rules

Measures species seg-
regation, but does
not require perfect
checkerboard distri-
butions

Measures pattern in
marginal totals of
matrix

May reflect ‘‘forbidden
species combina-
tions’’ (Diamond
1975)

Notes: Si 5 total for row i; R 5 number of rows (5species) in the matrix; Q 5 number of sites in which both members
of a species pair are present.

ing could be applied to the rows of the species occur-
rence matrix, which represent occurrence frequencies
of each species. The null model could retain observed
row totals, allow rows to be equiprobable, or set prob-
abilities proportional to observed row totals.

Thus, a universe of 32 5 9 simple null models (SIM1
to SIM9) could be constructed using only information
contained in the row and column totals. These models
differ in whether rows and columns are treated as fixed
sums, equiprobable, or proportional. All of the algo-
rithms are plausible candidates for a null model, and
some have been used in other analyses in biogeography
and ecology (Table 2). Table 3 gives a hypothetical
data matrix, and Fig. 1 illustrates the simulation pro-
cedure for each algorithm with this matrix. I have sys-
tematically compared the behavior of all nine algo-
rithms with the four different indices.

Kinds of data

Two types of data sets are used in co-occurrence
analysis. The first type I call ‘‘island lists.’’ These rep-
resent nearly complete lists of species from islands or
well-defined habitat patches. The lists are often accu-
mulated from many thorough censuses, and can be
found in the literature for well-studied vertebrate taxa
and ‘‘popular’’ invertebrate taxa such as butterflies.
Island lists are typically nondegenerate matrices, be-
cause missing species and empty islands are often not
recorded or reported.

The second type of data set I call ‘‘sample lists.’’
These represent lists of species taken from standardized
samples within areas of relatively homogeneous hab-
itat. These lists are generated from short-term ecolog-

ical censuses, such as pitfall traps, cores, bait samples,
sweep samples, line, belt, and quadrat samples, point
counts, and timed censuses. Often these lists are in-
complete, and may not include rare or undersampled
species, so that total species richness must be estimated
by extrapolation (Colwell and Coddington 1994). Sam-
ple lists often form degenerate matrices, because some
samples may contain no species.

Fig. 2 is an example of a matrix based on island lists:
the 17 species of finches (Fringillidae) from 19 of the
largest islands in the West Indies. The islands have been
well censused for the past century, although extensive
habitat change and species extinctions have been re-
corded. The matrix contains a range of species occur-
rence frequencies from single-island endemics (Loxia
leucoptera) to widespread species (Tiara bicolor). Sim-
ilarly, the total number of finch species on the islands
ranges from 1 (Antigua) to 7 (Hispaniola). Total bird
species richness on these islands ranges from 16 (St.
Martin, Barbados) to 79 (Cuba, Hispaniola).

Fig. 3 is an example of a matrix based on sample
lists: the species of ground-foraging ants collected in
25 pitfall trap samples in an open field in Prince Edward
County, Virginia. These data are part of a regional cen-
sus of ants at 33 sites in the eastern United States. At
each site, 25 pitfall traps (50-mL plastic centrifuge
tubes, 27 mm diameter) were established in a 5 3 5m
grid. Traps were opened for 48 h, and the ants from
each trap were identified to species when possible (de-
tails in Arnett 1998). Most of the species in the col-
lection occurred in only a single sample, and 13 of the
25 traps contained no ants. The most common taxon
(Aphaenogaster rudis complex) occurred in 5 of the
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TABLE 2. Summary of nine null model algorithms for species co-occurrence analysis.

Constraint

Constraint Columns equiprobable Columns proportional Column sums fixed

Rows equiprobable SIM1
P(aij) 5 1/RC
All species and sites are equi-

probable. Classic randomiza-
tion test in which all matrix
rearrangements are equally
likely.

Sokal and Rohlf (1995:803)

SIM6
P(aij) 5 Tj /NR
All species are equiprobable.

Sites differ in suitability.
Probabilities of occurrence
in sites proportional to ob-
served species richness/site.
Inverse of SIM7.

SIM3
P(aij) 5 1/R
All species are equiprobable.

Species number per site
fixed. Inverse of SIM2.

Johnson (1974), Simberloff
(1978), Patterson and Atmar
(1986)

Rows proportional SIM7
P(aij) 5 Si /NC

SIM8
P(aij) 5 SiTj /N2

SIM5
P(aij) 5 Si /N

All sites are equiprobable.
Species differ in occurrence.
Probabilities of occurrence
of species proportional to
observed species occurrence
frequencies. Inverse of
SIM6.

Both species and sites differ in
suitability. Probabilities of
occurrence are conditional
on both site and species
marginal totals.

Gilpin and Diamond (1982),
Gotelli and Graves (1996)

Species richness/site fixed.
Species differ in occurrence.
Probabilities of occurrence
of species proportional to
observed species occurrence
frequencies. Inverse of
SIM4.

Abele and Patton (1976), Con-
nor and Simberloff (1978),
Patterson and Atmar (1986)

Row sums fixed SIM2
P(aij) 5 1/C
Species occurrence totals

fixed. All sites are equiprob-
able. Inverse of SIM3.

Sale (1974), Inger and Colwell
(1977), Winemiller and
Pianka (1990)

SIM4
P(aij) 5 Tj /N
Species occurrence totals

fixed. Sites differ in suitabil-
ity. Probabilities of occur-
rence in sites proportional to
observed species richness/
site. Inverse of SIM5.

Coleman et al. (1982), Graves
and Gotelli (1993)

SIM9
P(aij) 5 [not applicable]
Cannot be simulated by filling

an empty matrix. Row and
column sums simultaneously
maintained. Degenerate ma-
trices not possible.

Connor and Simberloff (1979)

Notes: Each entry gives the abbreviation for the model, a formula for calculating the probability of cell occupancy for the
first cell in the matrix [P(aij); see Fig. 1], a description of the algorithm, and citations of other studies in community ecology
or biogeography that have used this model or one very similar. N 5 matrix total, R 5 number of rows, Si 5 total for row i;
C 5 number of columns; Tj 5 total for column j.

TABLE 3. Hypothetical presence–absence matrix used in null model analysis of species co-occurrence patterns.

Species Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Row total (Si)

Species A
Species B
Species C
Species D
Species E

1
0
0
0
1

1
1
0
1
1

0
0
0
0
1

1
0
0
0
0

0
0
1
0
0

0
0
1
0
0

3
1
2
1
3

Column total (Tj) 2 4 1 1 1 1 10
Grand total (N)

Note: Fig. 1 illustrates simulations procedures with this matrix.

traps, and species richness in the traps ranged from
only 1 to 3 species.

Both the finch matrix and the ant matrix were tested
with all combinations of algorithms and indices. I also
used the dimensions and marginal totals of the finch
matrix to construct random matrices for Type I error
analysis.

The special problem of degenerate matrices

All of the algorithms except the Connor and Sim-
berloff (1979) procedure (SIM9; see Table 2) can po-
tentially create degenerate matrices, that is, matrices
in which one or more rows or columns is empty. Bi-

ologically, these correspond to islands with no species
and species that occur on no islands. How should these
degenerate matrices be handled? Connor and Simber-
loff (1983) warned that these matrices might be prob-
lematic for null model comparisons, and for this reason
they advocated the use of SIM9. On the other hand, it
is biologically realistic to imagine that degenerate ma-
trices might arise during random colonization. Haef-
ner’s (1988) analyses suggest that degenerate matrices
may not greatly affect the analysis. Although I do not
report the results in detail here, I examined the statis-
tical properties of both degenerate and nondegenerate
matrices to understand how they might affect null mod-
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FIG. 1. Probability calculations for nine null model algorithms (SIM1–SIM9). The algorithm is defined by whether rows
and columns are treated as equiprobable, proportional to observed totals, or fixed sums. For each simulation, the circled
values indicate marginal totals that are used to randomly fill the matrix. Each cell entry is the probability of occurrence for
the first cell that is filled in the matrix. Probability values were calculated from the hypothetical data set in Table 3, using
the formulae in Table 2. No entries are shown in the cells of SIM9, because this model requires maintenance of both row
and column totals, and is created by a transposition algorithm (see the discussion in Simulation procedures for details).
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FIG. 1. Continued.

el tests. The general result was that degenerate matrices
did increase the frequency with which the null hy-
pothesis was rejected. However, for well-behaved al-
gorithms, this increase was usually ,10%. The effect
of degenerate matrices was usually much less than the
effect of the algorithm or index selected.

Estimating Type I errors

Estimating Type I errors means using each algorithm
and index to statistically evaluate a ‘‘random’’ test ma-
trix, which is presumably random with respect to spe-
cies interactions. For each combination of index and
algorithm, I created 100 such test matrices, and kept
track of the 100 upper- and lower-tail probabilities for
each test. If the test is robust to Type I error, ;10 of
the 100 test matrices should have been nonrandom at
P , 0.05 (in either tail). On the other hand, if the test
is prone to Type I error, the number of times the null
hypothesis is rejected will be much greater than 10.
Algorithms or indices that are prone to Type I errors
should not be used because there is a danger that we
will incorrectly reject the null hypothesis for a data set
that is random.

How, exactly, should a ‘‘random’’ matrix be con-
structed for such a test? I used four procedures to create
different kinds of test matrices. Each matrix was cre-
ated using the observed marginal totals from the West
Indian finch matrix (Fig. 2). The four kinds of test
matrices were:

Test 1—Complete randomization. The 55 species oc-
currences were completely randomized across the 19
3 17 5 323 cells of the matrix. This is equivalent to
SIM1.

Test 2—Randomize each row, columns equiproba-
ble. The species occurrences in each row were ran-
domized among the 19 sites. This is equivalent to
SIM2.

Test 3—Randomize each row, columns proportional.
The species occurrences in each row were randomized
among the 19 sites, with the probability of occurrence
being proportional to the column total in the matrix.
This is equivalent to SIM4.

Test 4—Randomize each row, columns proportional
to the logarithm of island areas. The species occur-
rences in each row were randomized among the 19
sites, with the probability of occurrence proportional
to the logarithm of island area.

Thus, in the first three kinds of test matrices, there
is an identical simulation procedure that is used to eval-
uate the matrix. Test 4 incorporates independent data
on island areas in order to construct test matrices. Only
nondegenerate test matrices were used in these anal-
yses. Once each test matrix was created, it was eval-
uated statistically with 1000 randomizations of each of
the 36 combinations of algorithms (9) and indices (4).
I repeated this process for 100 test matrices of each
combination. The computer program kept track of the
number of times the null hypothesis was rejected (either
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FIG. 2. An example of an ‘‘islands list’’ matrix of West Indian finches (Fringillidae). Data from Gotelli and Abele (1982).

tail) and the average, or expected value of the index
for each simulation. Because there is no a priori way
to decide which of the four kinds of random matrices
(Test 1 through Test 4) are most valid, I averaged the
results across all four in order to compare the different
simulation algorithms (SIM1 through SIM9) and dif-
ferent co-occurrence indices (CHECKER through
COMBO).

Estimating Type II errors

Estimating Type II errors means using each algo-
rithm and index to statistically evaluate a nonrandom
test matrix. Such a nonrandom matrix should reflect
the effects of species interactions. A test that was vul-
nerable to Type II error would fail to detect nonrandom
patterns in such a structured matrix. How should such
a nonrandom matrix be constructed? One strategy
would be to build a specific model of species inter-

actions and use this model to create the test matrix.
Examples of this strategy include Case and Sidell
(1983), Colwell and Winkler (1984), Hastings (1987),
and Kelt et al. (1995).

However, a weakness of this approach is that the
results are always contingent on the particular model
chosen for comparison. In addition, it may not represent
a fair test of the null model. As some critics have point-
ed out (Roughgarden 1983), the null model does not
explicitly describe the colonization and extinction of a
noninteractive fauna (but see Caswell 1976), so perhaps
it should not be evaluated against an explicit compe-
tition model. Rather, the null model can be evaluated
by using a matrix that has a pattern that is expected to
result from competition, without specifying a mathe-
matical model to create this pattern. Diamond and Gil-
pin (1982) give two such examples of nonrandom ma-
trices (Fig. 4) that they believe would reflect patterns
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FIG. 3. An example of a ‘‘sample list’’ matrix of Virginia ants. Source: unpublished data from A. E. Arnett and N. J.
Gotelli (see Arnett 1998).

caused by interspecific interactions. Each matrix is 20
3 20. The first contains 100 of 190 possible species
pairs forming perfect checkerboards (Fig. 4A), and the
second contains 10 of 190 pairs in a perfect checker-
board arrangement (Fig. 4B). Stone and Roberts (1990)
used these matrices to evaluate their C score index, and
I follow their lead in these analyses.

However, with these matrices, the null hypothesis is
rejected at P , 0.001 for nearly all of the algorithms
and indices. These two matrices are so extreme that
they do not reveal the relative power of the different
tests. Moreover, real data sets will never have distri-
butions this extreme, which limits the usefulness of the
comparison. To overcome these problems, I used a
‘‘noise test’’ to evaluate the power of different null
models (Gotelli et al. 1997).

The noise test can be understood with an analogy
(suggested by Gary Entsminger). Imagine that I open
a new deck of playing cards, in which the cards are
arranged in numerical order within each suit. Next, I
randomly choose two cards in the deck and switch
them. If I showed you this deck, you would immedi-
ately recognize that it was unshuffled. In fact, I could
probably transpose many such pairs of cards and you
would still have no trouble detecting the original or-
dering of the deck. However, if I continued to switch
cards, at some point you could no longer distinguish
the original ordering, and you would conclude that the
deck had been previously shuffled. Eventually, the

‘‘noise’’ from the transpositions will have swamped the
‘‘signal’’ of the original ordering.

When applied to co-occurrence matrices, repeated
random swapping of cell contents reduces the effect
size in the matrix. For power tests of the different al-
gorithms, I began with Diamond and Gilpin’s (1982)
perfect checkerboard matrix (Fig. 4A), and then began
by swapping the contents of two randomly chosen cells
within each row of the matrix. After the two cells were
swapped, I tested the new matrix against each of the
null models, and recorded the tail probabilities. Next,
I swapped an additional pair of cells in the matrix, and
repeated the test. This sequence continued until a total
of 20 pairs of cells in each row had been swapped. At
that point, the matrix had been entirely randomized,
following the procedure of SIM2. I created five such
sequences of random matrices and recorded the average
tail probability at each of the 10 noise levels. To eval-
uate the power of the test, I plotted the average tail
probability against the number of cells swapped. I used
a one-tailed test for the pattern that would be expected
with competition (Table 1).

What should the plot of tail probability vs. noise
level look like? If the test is prone to Type II error, the
curve would rise very quickly above the 0.05 rejection
level. In other words, it would take very little noise to
obscure the statistical significance of the pattern. Con-
versely, the test is prone to Type I error if the curve
never rises above the 0.05 mark, even at very high
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FIG. 4. Two highly structured presence–absence matrices. Diamond and Gilpin (1982) presented these matrices as examples
of the sort of pattern that should be revealed as nonrandom by a null model test. Each row is a species and each column is
a site. The matrix on the left (A) was used as the basis for the Type II ‘‘noise test’’ illustrated in Fig. 6.

levels of noise. Such a test will continue to reject the
null hypotheses even though the pattern in the data had
been entirely obliterated by noise. A desirable profile
would be one in which the test statistic is well below
the 0.05 mark for low levels of noise, then well above
the 0.05 mark for high levels of noise (Figure 5).

Comparisons of different indices

Because they all quantify ‘‘co-occurrence,’’ analyses
based on these four indices (CHECKER, C score, V
ratio, and COMBO) might produce similar results. To
evaluate the extent to which each index measures a
different type of pattern, I began with the West Indian
finch matrix and started transposing submatrices ac-
cording to the recipe for SIM9. I carried out 10 000
such transpositions, and retained the one matrix that
generated the greatest score for CHECKER. Next, I
tested this matrix, using SIM9, with the C score and
COMBO indices. I repeated this procedure of gener-
ating an extreme matrix for each index and testing it
against the other three indices. If the four indices are

measuring similar sorts of patterns, then an extreme
matrix for one should be extreme for the other three.
On the other hand, if the indices detect different kinds
of patterns, a matrix that is extreme for one index will
not generate a significant result using other indices.
The V ratio was not used in this analysis because re-
taining row and column totals as in SIM9 does not ever
change the index, so all of the null matrices would have
the same V ratio as the original matrix.

Simulation procedures

I used three different strategies for constructing ran-
domized matrices:

1) ‘‘Reshuffling.’’ For SIM1, SIM2, and SIM3, I be-
gan with the original input matrix and reshuffled spe-
cies occurrences within rows (SIM2), columns (SIM3),
or across the entire matrix (SIM1).

2) ‘‘Filling.’’ For SIM4 through SIM8, I started with
an empty matrix, and then began filling rows (SIM4),
columns (SIM5), or the entire matrix (SIM6 through
SIM8), with cell probabilities being either equiprobable
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TABLE 4. Summary of Type I error tests for null models.

Simulation
algorithm

Co-occurrence index

CHECKER C score V ratio COMBO Average

SIM1
SIM2
SIM3
SIM4
SIM5
SIM6
SIM7
SIM8
SIM9

0.72
0.07
0.77
0.16
0.74
0.89
0.77
0.91
0.08

0.76
0.08
0.77
0.27
0.76
0.73
0.73
0.56
0.10

0.14
0.10
0.77
0.10
0.62
0.12
0.12
0.08
n.a.

0.34
0.00
0.49
0.02
0.16
0.11
0.11
0.06
0.01

0.49
0.06
0.70
0.14
0.57
0.43
0.43
0.40
0.06

Average 0.57 0.53 0.26 0.15

Notes: Each entry is the average proportion of simulations
for which the null hypothesis was rejected (P , 0.05; two-
tailed) when tested against a random matrix. Boldface rows
indicate simulation algorithms for which the average pro-
portion was ,0.15. By chance, the expected proportion is
0.10. SIM9 is not applicable (n.a.) to the V ratio. See Table
2 for details of simulation algorithms, and Table 1 for details
of co-occurrence indices.

or proportional to row and/or column totals. Different
cell probabilities were calculated with a subroutine that
selected a random point along a number line. The prob-
abilities of occurrence corresponded to segments of
different length along the number line. If a cell was
already occupied, another random placement was made
along the number line until an empty cell was selected.

3) ‘‘Transposing.’’ For SIM9, I used a modified ver-
sion of Manly’s (1995) method. This method involves
transposing randomly chosen submatrices of the form:

   . . . 1 . . . 0 . . . . . . 0 . . . 1 . . .
   
. . . . . . . . . . . . . . . to . . . . . . . . . . . . . . . .   

   
. . . 0 . . . 1 . . . . . . 1 . . . 0 . . .   

Submatrices do not have to be in physically adjacent
rows or columns. This transposition results in a new
matrix, but one that retains row and column totals of
the original matrix. I first used 1000 transpositions to
remove transient effects and make sure that the ran-
domized matrix was very different from the original.
Next, I retained each consecutive matrix produced by
a single swapping of submatrices. Manly (1995) es-
tablished that co-occurrence indices derived from se-
quences of these matrices are independent with respect
to the original matrix. I checked this procedure against
results presented by Stone and Roberts (1990), who
used two other methods for creating random matrices
with fixed row and column totals, and was able to gen-
erate identical results when testing the same matrix.

All of the algorithms described in this paper are
available in a user-friendly application of null models
software, EcoSim (Gotelli and Entsminger 1999).

RESULTS

Type I errors

Table 4 summarizes the average proportion of sim-
ulations for which the null hypothesis was rejected

when it was tested against a random matrix. If the test
is not prone to Type I error, the null hypothesis should
have been rejected ;10% of the time (5% in each tail).
There were strong, consistent differences in the error
frequencies of the different algorithms. Only SIM2 and
SIM9 had average error frequencies of ,10%, although
SIM4 also performed reasonably well, with an average
error frequency of 14%. SIM3 and SIM5 had the worst
performance, with the null hypothesis being rejected
.50% of the time for randomly constructed matrices.
The other algorithms rejected the null hypothesis
,50% of the time, but they were still well above the
expected error frequency of 10%.

Comparing the four indices on the basis of Type I
errors is difficult because of the variation among al-
gorithms. Overall, COMBO and the V ratio had lower
Type I error frequencies than CHECKER or the C
score. For each index, there were at least two algo-
rithms that had acceptable Type I error frequencies.

Type II errors

Fig. 6 illustrates the effect of adding progressive
amounts of noise to the perfect matrix in Fig. 4A. As
more and more pairs of elements in each row of the
matrix are randomly reshuffled, the statistically sig-
nificant pattern breaks down, and the P value rises
above 0.05. If the P value rises very quickly with in-
creasing noise, the test is prone to Type II error, because
only a slight rearrangement of the data renders the test
nonsignificant. Conversely, some combinations of in-
dices and algorithms were prone to Type I error, and
these curves never rose above the 0.05 level, even when
the entire matrix had been randomly reshuffled.

Of the four indices, COMBO and CHECKER were
most prone to Type II error, and in many simulations,
the P value curves immediately rose above the 0.05
level. The least sensitive index was the C score, al-
though this index was prone to Type I error for some
of the algorithms. The V ratio had an intermediate re-
sponse, usually rising above the curve for the C score
but falling below the curves for COMBO and CHECK-
ER.

Comparisons of the nine algorithms are less clear
cut. COMBO and CHECKER were sensitive to noise
for all the algorithms, whereas C and V seemed to
perform best with SIM2, SIM4, and SIM9. However,
other combinations also gave acceptable results. Very
few of the trials generated the idealized noise curve of
Fig. 5. Overall, the best combination was using the C
score with a randomization that held row and column
totals fixed (SIM9). This test generated statistically sig-
nificant results until approximately half of the cell val-
ues in the matrix had been randomly rearranged, then
gave nonsignificant results as more noise was added.

Performance of different indices

Table 5 illustrates the effect of using different indices
to evaluate extreme patterns. In this table, the original
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FIG. 5. Hypothetical error curves for a Type II noise test.
As more and more site occurrences of species are randomized
in the matrix, the P value will rise from significant to non-
significant levels. A test is susceptible to Type I error if it
never rises above the 0.05 mark, even when the matrix is
entirely randomized. A test is susceptible to Type II error if
it rises too quickly above the 0.05 mark, even when very little
of the original pattern has been degraded by random trans-
positions. A test has a good balance of Type I and Type II
errors if it stays below the 0.05 mark until approximately half
of the matrix has been randomized, then quickly rises well
above the 0.05 mark as more noise is added.

TABLE 5. Extreme matrix analysis.

Extreme matrix
tested with:

Extreme matrix generated for:

CHECKER C score COMBO

CHECKER 98
[89.73]

(0.0001)

86
[89.68]
(0.986)

91
[89.18]
(0.258)

C score 2.65
[2.73]

(0.670)

3.98
[2.77]

(0.0001)

3.79
[2.77]

(0.001)

COMBO 17
[15.50]
(0.987)

14
[15.28]
(0.219)

12
[15.23]

(0.0001)

Notes: Each column represents a different co-occurrence
index that was used to generate an extreme matrix with SIM9.
Each row represents a co-occurrence index that was used to
test the matrix generated for each column. The first entry is
the observed co-occurrence index. The entry in square brack-
ets is the expected value of the index from 1000 simulations
(SIM9). The entry in parentheses is the tail probability for
this pattern. Diagonal entries (in boldface) represent the orig-
inal extreme matrix that was generated by 10 000 random
transpositions using SIM9.

TABLE 6. Results of null model analyses of the West Indian
finches co-occurrence matrix (Fig. 2).

Observed

CHECKER

91

C score

3.79

V ratio

1.23

COMBO

10

SIM1 71.23
(0.001)

7.21
(1.000)

0.69
(0.957)

18.56
(,0.001)

SIM2 94.86
(0.873)

2.93
(,0.001)

0.76
(0.932)

17.43
(,0.001)

SIM3 71.66
(,0.001)

7.30
(1.000)

0.76
(1.000)

18.75
(,0.001)

SIM4 90.10
(0.552)

2.52
(,0.001)

1.14
(0.622)

15.91
(,0.001)

SIM5 53.09
(0.008)

5.76
(0.983)

1.08
(0.914)

17.48
(,0.001)

SIM6 61.85
(,0.001)

6.57
(1.000)

1.28
(0.520)

17.94
(,0.001)

SIM7 53.71
(0.007)

5.74
(0.974)

0.78
(0.915)

17.39
(,0.001)

SIM8 51.67
(0.004)

5.11
(0.920)

1.25
(0.585)

17.16
(0.002)

SIM9 89.30
(0.239)

2.75
(,0.001)

n.a. 15.12
(0.001)

Notes: Each column is a different co-occurrence index and
each row is a different simulation algorithm (see Tables 1
and 2 for details). The first row is the observed co-occurrence
index for the matrix in Fig. 2. The other rows give the ex-
pected index, averaged over 1000 simulations of the algo-
rithm. The P value for a one-tailed test is given in parentheses.
Tail probabilities ,0.05 are indicated in boldface. The V ratio
cannot be used with SIM9 (n.a.) because it maintains row
and column sums (see the discussion in The variance ratio
as an index of nonrandomness for details).

West Indian finch matrix was rearranged using SIM9,
and the most extreme of 10 000 matrices was retained.
For example, using the number of checkerboards as the
index, the computer generated one matrix out of 10 000
that had 98 species pairs in perfect checkerboards. The
average number of checkerboards for all the simulated
matrices was only 89.73. However, when this extreme
matrix was then tested with the C score and COMBO,
the patterns for these indices were nonsignificant. The
same result was obtained when extreme matrices were
first generated for the C score and COMBO, and then
tested with the other two indices. Only the extreme
matrix generated for COMBO gave a similar result
when tested with the C score. Thus, although all the
indices measure species co-occurrence, they reveal dif-
ferent aspects of co-occurrence pattern, and do not al-
ways give congruent results.

Empirical comparisons

Table 6 illustrates the results of testing the original
West Indian finch matrix against all nine algorithms
and four co-occurrence indices. The number of species
combinations in this matrix is 10, which was signifi-
cantly less than expected for all of the simulation al-
gorithms. In contrast, the observed V ratio of 1.23 was
never less than expected by chance. The C score was
greater than expected for SIM2, SIM4, and SIM9.
These are the three algorithms that were not prone to
Type I errors (false positives; Table 4). There were 91
species pairs that formed perfect checkerboards
(CHECKER), and this was greater than expected for
SIM1, SIM3, SIM5, SIM6, SIM7, and SIM8. However,
these algorithms are all very prone to Type I errors
(Table 4) when used with CHECKER. Overall, there
is good evidence that there were fewer species com-
binations than expected by chance in the West Indian
finch matrix, and that the average number of check-
erboard units per species pair was greater than ex-

pected. Both patterns are consistent with the hypothesis
that local coexistence of congeneric species of finches
is limited (Terborgh 1973; but see Gotelli and Abele
1982). Although species pairs showed less co-occur-
rence on islands than expected by chance as measured
by the C score, there was no tendency for species to
form perfect checkerboard distributions, as in Diamond
(1975) or Graves and Gotelli (1993).
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TABLE 7. Results of null model analyses of Virginia ants
co-occurrence matrix (Fig. 3). Entries are as in Table 6.

Observed

CHECKER

48

C score

2.07

V ratio

0.98

COMBO

10

SIM1 32.35
(0.050)

3.31
(0.993)

0.70
(0.865)

11.24
(0.230)

SIM2 49.58
(0.860)

2.15
(0.682)

0.70
(0.878)

11.39
(0.195)

SIM3 30.04
(0.014)

3.04
(0.994)

0.98
(0.569)

10.81
(0.353)

SIM4 41.89
(0.014)

1.67
(0.007)

1.71
(0.034)

9.40
(0.861)

SIM5 23.52
(0.003)

3.35
(0.988)

1.03
(0.148)

10.19
(0.608)

SIM6 26.05
(0.001)

2.39
(0.704)

1.73
(0.029)

9.45
(0.859)

SIM7 24.92
(0.012)

3.83
(0.993)

0.71
(0.852)

10.37
(0.559)

SIM8 20.37
(,0.001)

2.56
(0.767)

1.72
(0.033)

9.23
(0.888)

SIM9 47.18
(0.175)

2.00
(0.199)

n.a. 10.71
(0.406)

Table 7 illustrates the results of testing the Virginia
ant matrix against all nine algorithms and four co-oc-
currence indices. In contrast to the results of the West
Indian finch analysis, few of these tests are statistically
significant for well-behaved algorithms. Ten species
combinations were observed in this matrix, which was
not statistically significant for any of the algorithms.
There were more checkerboard species pairs (48) than
expected compared with SIM1, and SIM3 to SIM8.
However, these algorithms are prone to Type I error
for this index (Table 1). The C score was significantly
greater than expected only when compared to SIM4,
which is also prone to Type I error for this index (Table
1). The only evidence for nonrandomness was in the
V ratio, which was significantly less than expected for
SIM4, SIM6, and SIM8. However, all of these models
assume that there is variation in site quality, so that
probabilities of occurrence are proportional to species
richness totals for each site. Thus, ‘‘empty sites’’ in
the original matrix will not be filled in these simula-
tions. A more appropriate null model for the ant data
would be SIM2, in which species occurrences are fixed
and all sites are equiprobable. None of the co-occur-
rence indices showed a significant pattern with SIM2.
Overall, there is little evidence that the small-scale co-
occurrence of ant foragers in pitfall traps was nonran-
dom.

DISCUSSION

Choosing the right algorithm

Although all nine algorithms are logically plausible,
the analyses reveal that many of the algorithms would
be unacceptable choices because they are very prone
to Type I error, and would be expected to produce false
positives with data sets that have little or no real struc-
ture. However, three algorithms consistently had low
probabilities of Type I errors when compared with a

variety of random data matrices: SIM2, SIM4, and
SIM9 (Table 4). These algorithms share in common the
property that they all maintain the observed row totals,
that is the species occurrence frequencies. The algo-
rithms differ in how the columns (5sites) are treated.
In SIM2, the sites are equiprobable, whereas in SIM4,
the probability that a species occurs in a site is pro-
portional to the column total for that site. Finally, SIM9
maintains the observed number of species in a site.
Conceptually, these algorithms are satisfying, because
they correspond to a colonization model in which spe-
cies colonize an archipelago randomly with respect to
one another. Note that the colonization of each species
is not ‘‘random’’ with respect to the sites: occurrence
frequencies are maintained for each species, and, in
SIM4 and SIM9, differences among islands are main-
tained. But the species occurrences are random with
respect to one another, which is an appropriate null
model for detecting patterns caused by species inter-
actions.

Critics have pointed out that extinctions are an im-
portant outcome of species interactions, so that incor-
porating species occurrence frequencies may ‘‘smuggle
in’’ species interactions in the null model. Although
this may be true, my analysis of Type I errors suggests
that allowing species occurrence frequencies to vary
may generate false positives in a null model test. This
conclusion is reinforced by other debates in the null
model literature. For example, Gilpin and Diamond’s
(1982) null model operates on the same principle as
SIM8, which allows species occurrence frequencies to
vary. Wilson (1987) showed that this model rejects the
null hypothesis for random data sets constructed by the
recipe for TEST1, although Gilpin and Diamond (1987)
contend that Wilson (1987) did not correctly implement
their model.

In an analysis of species co-occurrence as measured
by ‘‘favored states’’ analysis, Fox and Brown (1993)
used a null model that implicitly assumed species oc-
currence frequencies were equiprobable. Stone et al.
(1996) and Wilson (1995) reanalyzed the data and ad-
justed species occurrences on the basis of observed
frequencies and species geographic ranges. In these
reanalyses, the co-occurrence patterns were no longer
statistically significant.

Because the co-occurrence tests are very sensitive
to variation in species occurrence frequencies, row to-
tals should be preserved as a constraint in the null
model. On the other hand, the results were surprisingly
insensitive to variation in column totals (5number of
species per site), so this constraint should be modified
to reflect sampling methods or variation in site quality.
Specifically, SIM9 seems most appropriate for analyz-
ing ‘‘island lists,’’ especially for classic archipelago
data in which there are strong species–area effects. On
the other hand, SIM2 seems most appropriate for an-
alyzing ‘‘sample lists,’’ particularly when comparing
standardized samples that have been collected in areas
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FIG. 6. Type II error tests for SIM1–SIM9. Each panel depicts the four co-occurrence metrics tested against a different
simulation algorithm. The x-axis is the noise level, that is, the number of site occurrences that have been randomly transposed
within each row of the perfect checkerboard matrix (Fig. 4A). The y-axis is the P value, shown on a log scale, with the 0.05
level indicated by a dashed line. Each point represents the average P value for five independent trials. Key to symbols: open
circle 5 C score; solid diamond 5 V ratio; open triangle 5 number of species combinations (COMBO); solid circle 5 number
of species pairs forming perfect checkerboards (CHECKER). Compare these curves to the idealized curves in Fig. 5.

of homogenous habitat. SIM4 is somewhat of a hybrid
between these two, because it allows column totals to
vary, but in proportion to observed totals. However, it
may cause the null hypothesis to be incorrectly re-
jected, especially if used with the C score or CHECK-
ER.

Choosing the right index

The choice of index is not as clear-cut as the choice
of which algorithm to use, in part because each index
seems to measure a slightly different aspect of species
co-occurrence (Table 5). The number of checkerboards
(CHECKER) and the number of species combinations
(COMBO) are most relevant to the historical devel-
opment of ideas on community assembly (Diamond
1975). However, both of these indices may cause the
null hypothesis to be incorrectly accepted (Fig. 6), be-
cause they are sensitive to rearrangements of species
occurrence patterns. A change in a single species oc-
currence can create or destroy a perfect checkerboard,
or add or delete a species combination. Consequently,
these measures will also be sensitive to measurement
error, which may be common in presence–absence ma-
trices.

In contrast, the C score and the V ratio are based on
the average co-occurrence and covariance, respective-
ly, of all species pairs. Therefore, minor changes in the
data do not affect these indices as much. The C score,
in particular, seems relatively insensitive to noise in
the data, and can still detect pattern even when ;50%
of the species occurrences in a perfect checkerboard
matrix have been randomized (Fig. 6). When used with
SIM2 or SIM9, the C score has good statistical prop-
erties and is not prone to false positives (Table 4).
Finally, this index measures the checkerboard pattern
of species mutual exclusion that reflects competitive
interactions, but is not as restrictive as a count of per-
fect checkerboard pairs (CHECKER).

The variance ratio as an index of nonrandomness

The behavior of the V ratio is somewhat unusual,
and deserves special comment. Of all the co-occurrence
indices, it is the one index that is uniquely determined
by the row and column totals, and not by the actual
co-occurrence pattern itself. For this reason, it cannot
be tested with SIM9, which retains row and column
totals, and therefore generates no variation in the V
ratio. For the V ratio, ‘‘The null hypothesis of no as-
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sociation (H0) states that the sum of the [species’] co-
variances is zero’’ (Schluter 1984: 999). However, this
turns out to be a somewhat different measure of co-
occurrence than the C score and CHECKER.

What, precisely, does the V ratio measure? It mea-
sures the variability in the number of species per site.
In a null community, we would expect the number of
species per site to vary because of chance colonization.
However, if species richness is regulated because of
biological interactions, communities should converge
on a relatively constant number of species per site. This
is the niche limitation hypothesis of Wilson et al.
(1987), which states that the variance in species rich-
ness per site should be unusually small if the number
of species within a guild is limited by competition (Col-
well 1979).

If all the sites have exactly the same number of spe-
cies, there is no variance among sites, and the observed
V ratio is zero. The reason the V ratio detects a highly
significant pattern for the matrix in Fig. 4A is not be-
cause of the large number of checkerboard arrange-
ments of species, but because each site in the matrix
contains exactly 20 species. Thus, the V ratio, used
with SIM2 or SIM4, is a useful probe for determining
whether species interactions are constraining the num-
ber of coexisting species. There is no evidence of this
for either the West Indian bird matrix (Table 6) or the
Virginia ant matrix (Table 7), because in both of these
examples, there is considerable heterogeneity in spe-
cies richness per site. Variation among sites probably
also explains Schluter’s (1984) finding that most pub-
lished co-occurrence matrices exhibit V ratios greater
than 1.0.

The importance of row and column totals

All of the algorithms presented in this paper make
use of information in the row and column totals to
constrain the randomizations. Critics of null models
have claimed that this procedure is circular because the
marginals themselves reflect competitive interactions
(Grant and Abbott 1980, Colwell and Winkler 1984).
However, my analyses demonstrate that row and col-
umn constraints do not prevent the null model from
detecting patterns in nonrandom matrices, even when
the pattern has been considerably degraded by adding
noise (Fig. 6). Moreover, the use of marginal con-
straints forms the basis for contingency table analysis
(Fienberg 1980), which has been widely used in the
analysis of species co-occurrence patterns (Whittam
and Siegel-Causey 1981). If one wishes to test the hy-
pothesis that marginal constraints are affected by spe-
cies interactions, the V ratio, perhaps used with SIM2
or SIM4, would be an appropriate model.

Practical advice for the empiricist

Some ecologists may despair at the results of these
analyses. After all, the same data matrix may yield
random or highly significant patterns, depending on

which algorithm or index is used for analysis (Tables
6 and 7). However, the same troubling result can be
obtained from conventional parametric analyses. Data
transformations, interaction terms, model structure, and
designation of fixed and random factors can generate
an equally bewildering diversity of outcomes in a
‘‘standard’’ analysis of variance (Scheiner and Gur-
evitch 1993). Ecologists need to move beyond the idea
that there is a single ‘‘one-size-fits-all’’ null model that
is appropriate. Rather, the null model and index should
be chosen based on the kind of data (island lists vs.
sample lists) collected and the question being asked.
For a preliminary analysis of co-occurrence patterns of
island list data, I suggest using the C score with SIM9.
This combination is not vulnerable to false positives,
has good power in the face of noisy data, and measures
a pattern of co-occurrence that would be consistent with
competitive exclusion.

But I would also recommend examining the outcome
of other models and other indices, as in Tables 6 and
7. There is great value in exploring the results of several
null models that incorporate different degrees of ran-
domness. Statistical purists will not approve of this
approach because it undercuts the rigorous interpre-
tation of calculated probability values, and because it
may tempt ecologists to go on ‘‘fishing expeditions’’
and search for an analysis that supports their precon-
ceptions. The advantage of this approach is that it pin-
points how changing the assumptions of the model al-
ters the results, which is an essential comparison for
any confrontation of a model with real data (Hilborn
and Mangel 1997). Certainly the interpretation of the
West Indian finch matrix and the Virginia ant matrix
was enhanced by consideration of a variety of null
models.

The models presented here are by no means ex-
haustive, and it is easy to imagine other algorithms that
could have been used. Ecologists will continue to de-
velop new kinds of null models that incorporate spatial
and temporal variability in populations and commu-
nities (Thomson et al. 1996, Roxburgh and Chesson
1998). However, the most important progress in null
model analysis will probably come from the analysis
of new data sets. Much of the older null model literature
is dominated by analysis and reanalysis of published
islands lists, such as the West Indian finch matrix (Fig.
2). These second- and third-hand data sets have a num-
ber of limitations, including species taxonomy, sample
standardization, source pool limits, and geographic var-
iation (Gotelli and Graves 1996). Home-grown data
sets, such as the Virginia ant matrix (Fig. 3), may offer
the best chance for examining species co-occurrence
patterns, because the methods of collection and anal-
ysis can be tailored to the questions being asked. Of
course, such data sets are more time consuming and
costly to obtain than using published island lists, but
ultimately, they should be more rewarding for under-
standing co-occurrence patterns in nature.
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SUPPLEMENTARY MATERIALS
The software utilized in the analysis presented here (EcoSim) is available in ESA’s Electronic Data Archive: Ecological

Archives E081-022. The software may be downloaded at no cost. All of the algorithms described in the paper are included.


