
Introduction

Researchers are increasingly looking for new tools in

order to understand ecological systems and to improve

conservation efforts to save biological diversity. Included

in these tools are the protocols for rapid assessment of

biodiversity (Coddington et al. 1991), the use of mor-

phospecies and higher taxa as a surrogate for species di-

versity (Oliver and Beattie 1996), the selection of indica-

tor taxa (Brown and Freitas 2000), and improved

techniques to estimate species richness in a given area or

assemblage (Palmer 1990, Colwell and Coddington 1994,

Patil and Taillie 2001). All these techniques are intended

to guide the selection of reserves, by optimizing the use

of scarce funds to save the greatest number of species, en-

demic or threatened taxa, key taxa in the ecosystem func-

tioning, and unique ecosystems.

In this sense, species richness estimators are thought

to be a valuable technique, as they would estimate diver-

sity in a given assemblage with small sampling effort

(Palmer 1990, Colwell and Coddington 1994). Differ-

ently from the number of observed species in a survey,

which is generally dependent on sample size, estimated

species richness is expected to be independent of sample

size. Fewer samples than what would be required by

counting observed species would produce good estimates

of species richness in an area (Gotelli and Colwell 2001),

thus saving time and money. Figure 1 depicts an esti-

mated curve that would be produced by an ideal method

as well as the corresponding observed species accumula-

tion curve in function of increasing sample size. While the

curve of observed accumulated species richness increases

slowly with sampling effort, the ideal estimator would

produce values close to the actual species richness in the

area using small sample sizes and then flatten off.

Species richness estimators were reviewed by Colwell

and Coddington (1994), who present the several tech-

niques currently available in an easy way to biologists.

They distinguished three classes of estimators, namely

Extrapolations of Species Accumulation Curves, Para-

metric Estimators, and Non-parametric Estimators. In-

cluded in the first class are several asymptotic functions,
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such as the Michaelis-Menten hyperbole of enzyme kinet-

ics used by biochemists (Keating and Quinn 1998). Para-

metric estimators are based on the assumption that bio-

logical data follow a specific distribution, such as the

lognormal. Besides having no assumption regarding data

distribution, the non-parametric methods including jack-

knife 1, jackknife 2, Chao 1, and Chao 2 (Table 1) are eas-

ily computed. They involve summing the number of spe-

cies already observed in a sample and a second term

related to the proportion of observed species that were

rare in the sample (Table 1). High species richness esti-

mates are obtained when non-parametric techniques are

employed on samples with high proportion of rare spe-

cies.

As previously outlined, a fundamental requirement of

species richness estimators is relative independence of

sample size. Thus, they should be able to produce reliable

values even when using small sampling efforts. However,

Colwell and Coddington (1994) discuss limitations of us-

ing non-parametric estimators on small sample sizes.

They point out that jackknife estimators attain their pla-

teau values at approximately twice the observed richness,

while Chao estimators at about half the square of the ob-

served number of species. As a consequence, Colwell and

Coddington (1994, p. 111) predict that “...these estimators

should correlate strongly with sample size until half (or

the square root of twice) the total fauna is observed and

thereafter become gradually independent of sample size

until finally the observed richness and the estimate con-

verge.” In fact, in a recent evaluation of species richness

estimators, we show that estimated richness curves do not

attain an asymptote early (Melo and Froehlich 2001a). In-

stead, they follow the observed species accumulation

curve in a quite regular way, estimating values in a fixed

proportion above the observed richness along most of the

increasing sampling effort (Fig. 1). Similar results show-

ing the dependence of estimates on the observed species

curve are provided by Condit et al. (1996) and Fisher

(1999a).

Here, I empirically explore the dependence of estima-

tors on observed species richness. Comments are made on

the usefulness of using non-parametric estimators to pre-
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dict species richness in an area and in the comparisons of

species assemblages.

An empirical relationship among sample sizes

needed to observe and to estimate a given richness

value

A striking relationship of dependence of richness es-

timates on observed values was obtained by plotting the

number of sampling units needed to observe a given rich-

ness value, when constructing a species accumulation

curve, and the number of sampling units needed to esti-

mate the same value using a non-parametric estimator.

Figure 2 shows such a relationship using the jackknife 1

estimator and a dataset of macroinvertebrates living on

stream stones (Table 2, local dataset, Melo and Froehlich

2001a). Notice that dots in Fig. 2 do not depict richness

values. Richness values were used only to match the cor-

responding number of sampling units in which the same

number of species can be obtained from the cumulative

observed list and from estimates of the jackknife 1. As the

jackknife estimates may be non-integer values, a precise

match between the two metrics was achieved by using the

species richness estimated by the first order jackknife for

each cumulative number of sampling units (y-axis) and

the corresponding interpolated x-value (Fig. 2).

The coefficient of determination obtained from the re-

lationship depicted in Fig. 2 is very high (r
�
= 0.997), dem-

onstrating that the sample size needed to estimate a given

richness value is a linear function of the sample size

needed to observe the same value from a species accumu-

lation curve. The relationship is so strongly linear that the

extrapolation of the fitted linear regression in Fig. 2 can

be used as richness estimator in a larger sample size. In

fact, such estimates of species richness for extrapolated

sample sizes are very reliable (Melo et al. 2003).
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The relationship shown in Fig. 2 is easily extended to

other non-parametric estimators. Figure 3 shows the rela-

tionship using jackknife 1, jackknife 2, Chao 1, and Chao

2 for the same stream macroinvertebrates dataset. Notice

that, when using different non-parametric estimators, dif-

ferences are greatly restricted to the inclination of the lin-

ear relationship. For the dataset used, jackknife 2 estima-

tor is able to produce a given observed richness value

using the smallest sample size, while the jackknife 1 pro-

vides the same when using the largest sample size.

I further constructed the relationship depicted in Fig.

2 to a range of other datasets (Table 2). The datasets com-

prise different taxa, species richness, sampling effort, and

data structure. As seen using the stream invertebrate

dataset, there were strong correlations between the

number of sampling units required to estimate and to ob-

serve a given species richness value (Table 3). Better cor-

relations were observed for jackknife 1 and 2 estimators

rather than for Chao 1 and 2 estimators.

A practical observation of the relationship depicted in

Fig. 2 is obtained by comparing the results of Hellmann

and Fowler (1999) and Melo and Froehlich (2001a). Hell-

mann and Fowler (1999) used five datasets of plants with

different species richness and proportions of rare species.

They found that for the jackknife1 and the jackknife 2, the

sub-sample sizes needed to estimate actual species rich-

ness in the total samples were respectively, 36.8-43.9%

and 22.6-29.1% of total samples. Melo and Froehlich

(2001a) used six datasets of stream macroinvertebrates

comprising different locations and spatial scales (local =

one stream site, and regional = several sites inside a same

catchment basin). They observed that jackknife 1 and

jackknife 2 estimated actual richness in the total samples

using subsamples of sizes 35.6-41.3% and 22.4-26.7% of

the total samples, respectively.

Non-parametric estimates and the number of rare

species in a sample

An implicit assumption to obtain the ideal estimated

curve in Fig. 1 is that the number of rare species (i.e.,

those occurring in/with 1 and or 2 sampling units/indi-

viduals) is high in small samples and decreases as sam-

pling effort increases. The assumption is similar to the

process to obtain a lognormal distribution from a trun-

cated lognormal distribution (Magurran 1988, p. 25). As

sample size is increased, the octave class containing rare

species is decreased until the situation where all species
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once rare become common – the non-truncated lognormal

distribution. Figure 4A illustrates a hypothetical example

using a jackknife 1 estimate curve and its three compo-

nents, (1) the observed species richness curve, (2) the rare

species curve (i.e., the number of species observed in 1

sampling unit), and (3) the correction factor for sample

size (i.e. [n-1]/n, where n is the number of sampling units).

For each sample size, jackknife 1 estimate is obtained by

multiplying the number of rare species by the correction

factor and then summing the obtained value with the ob-

served species richness (Table 1). Observed species rich-

ness curve in Fig. 4A was obtained from the stream

macroinvertebrates dataset (Table 2, local dataset), while

the rare species curve was obtained mathematically in or-

der to produce the hypothetical jackknife 1 curve. Notice

that this hypothetical rare species curve required in order

to produce the ideal estimator is unreal, as at small sample

sizes the number of rare species is higher than the number

of observed species. The asymptote of the hypothetical

jackknife 1 curve was chosen arbitrarily, but it is in the

range of species richness commonly found in other simi-

lar streams in the region (Melo and Froehlich 2001a,b).

For the same dataset from which the observed species

richness curve in Fig. 4A was obtained, Fig. 4B shows the

jackknife 1 curve using the actual rare species curve. The

actual rare species curve differs from the ideal rare species

curve in two ways. The actual rare species curve does not

decrease linearly as sample size increases and the absolute

number of rare species is low when compared to the ideal

rare species curve. Thus, after around 10 sampling units

are collected, the correction factor of sample size tends to

flatten off close to the unity and the jackknife 1 curve be-

comes mostly the sum of the observed species richness

with a practically constant number of rare species. Figure

5 shows curves for number of rare species (occurring in

only one sampling unit), observed species richness, and

the corresponding jackknife 1 estimates for other six

datasets. Despite the range of assemblage types, sample

effort, and taxa, the curves of the numbers of rare species

in all six datasets do not present a clear trend of decrease

as sample size increase. Instead, the curves tend to flatten

off around a constant number of rare species. A possible

exception could be that from forest trees, which presented

a slight decreasing trend.

Situations where non-parametric methods will

likely produce reliable estimates

I have shown above empirical datasets for which non-

parametric methods failed to produce reliable estimates.

However, we may wonder if non-parametric estimators

will always produce poor estimates. I argued that poor

performance of non-parametric estimators is a conse-

quence of the non-decreasing behavior of the rare species

curves as sampling effort increases. We may thus look for

datasets in which the rare species curve does show a de-

creasing behavior along with increased sample sizes. A

good example of this situation is the seed bank dataset

presented by Colwell and Coddington (1994) and avail-

able by downloading the EstimateS software (Colwell

1997). The dataset contains 34 species and 121 sample

units and is derived from a diversity study of the soil seed

bank in a tropical forest (Butler and Chazdon 1998). In

contrast to the rare species curves (uniques) presented in

Figure 4. 2
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Figures 4A and 5, the curve for rare species in the seed

bank dataset shows a distinct decreasing trend after 20

sampling units are pooled (Fig. 6). As predicted above,

the jackknife 1 curve behaves well for the dataset, increas-

ing steeply until 45 sample units are pooled and then sta-

bilizing around the value of 36 species. I further con-

structed the relationship depicted in Fig. 2 to the seed

bank dataset (Fig. 7). Instead of the linear relationship ob-

served in Fig. 3 and Table 3, the seed bank dataset pro-

duced a linear relationship until ca. 45 sampling units are

Figure 5. 2
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pooled, and then the slope decreases. For sample sizes

larger than 45 sampling units, the increase in richness es-

timate produced by the jackknife 1 when one sampling

unit is added is matched by the species observed curve

using a larger number of sampling units.

Discussion

The assumption that the number of rare species de-

creases as sampling size increases was observed in the in-

tentionally selected seed bank dataset, weakly supported

in the forest tree dataset, and clearly not supported in the

remaining six datasets presented. For the last six datasets,

the number of rare species increased at small sample sizes

and then tended to flatten off. This finding is not com-

pletely unexpected, as it is predicted in the Log-Series dis-

tribution of Fisher et al. (1943). In this distribution, the

number of species is infinite and the expected number of

species with one individual is given by multiplying the

parameters x and α, where x varies from 0 to 1 and α is

known as the diversity index of the distribution (Magur-

ran 1988, p. 133). When the ratio number of individuals

by number of species (N/S) is large, x tends to the unity

and if for instance the ratio is 20, x is around 0.99. Thus,

for large N/S ratios the expected number of species with

one individual is nearly equal to the α value. It has been

found in a number of studies that the α value is constant

as sample size increases (Taylor et al. 1976, Condit et al.

1996), and this independence of sample size is considered

a good property of this diversity index (Southwood 1978,

Magurran 1988). Further support to the constancy of the

number of rare species as sample size increases is ob-

served in the extensive collections of deep-sea inverte-

brates (Grassle and Maciolek 1992), leaf-litter ants

(Fisher 1999b), herbivorous insects in host plants (No-

votný and Basset 2000), and spiders (Toti et al. 2000). It

is noteworthy to observe that sample sizes in most

datasets in Table 2 are not small. For example, the sample

size of the stream macroinvertebrates dataset (local) is 2-3

times larger than the sample size usually employed to as-

sess diversity in a stream site (Stout and Vandermeer

1975, Minshall et al. 1985, Melo and Froehlich 2001b).

The above results about the constant number of rare

species in a sample imply that non-parametric estimates

will be simply the sum of observed species richness and a

nearly constant value. Indeed, recent evaluations of spe-

cies richness estimators have shown that their accuracy is

strongly dependent on sample size (Condit et al. 1996,

Wagner and Wildi 2002). The goal of estimating the

number of species accurately in an assemblage is illusive

unless sample size is so large that the rare species curve

starts to decrease. In this situation, the usefulness of non-

parametric estimators becomes doubtful, as the researcher

may have a good estimate of species richness in the area

by simply using the number of species already sampled.

This might be the case for the seed bank dataset explored

above. The jackknife 1 curve for the seed bank dataset sta-

bilized at 36 species after ca. 45 sampling units were

pooled. For this sample size, the observed species rich-

ness curve produced values around 30 species. Whether

the increase from 30 to 36 species is relevant will depend

on the question being evaluated and on the user’s judg-

ment.

In the same line of reasoning, Chazdon et al. (1998, p.

305) state that estimators will fail when the number of rare

species continues to remain high as new quadrats are sam-

pled. Implicit in their argument is the idea that in many

cases the number of rare species decreases as sample sizes

are increased. Indeed, this has been observed in inten-

sively sampled datasets, as the seed bank used above

(Colwell and Coddington 1994, Butler and Chazdon

1998) and others available in the literature (Bini et al.

2001, Walther and Martin 2001). As pointed out above, in

these cases researchers should judge whether the im-

provement produced by a non-parametric method is coun-

terbalanced by the use of a simpler estimate, the number

of species observed.

It is likely that many rare species in a sample are ac-

tually vagrant species, collected accidentally, or with dif-

ferent habitat requirements and that only occasionally oc-

cur in the habitat sampled (Magurran and Henderson

2003). After removing these species from datasets it is

possible that, as sampling effort is increased, the rare spe-

cies curve would tend to decrease, improving non-para-

metric richness estimates. Longino et al. (2002) provide a

good example in which it was possible to examine rare

species carefully and to judge whether they belonged to

the studied assemblage. However, given the current poor

knowledge of the natural history of most species in rich

assemblages, especially in the tropics, this would be arbi-

trary in most cases.

An additional problem in the estimation of species

richness using non-parametric estimator based on inci-

dence (presence or absence in sample units), such as the

jackknife 1 and 2 and Chao 2, is the effect of sample unit

size on the curve of rare species. For the same total area

sampled, the size of the sample units used will affect the

curve of rare species. A species occurring with several in-

dividuals in a single patch may be fully sampled by a large

sample unit and in this case would be considered a rare

species. In contrast, if the size of the sample unit is small,

individuals might be sampled in three sample units, and

in this case would not be considered a rare species. Con-
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sequently, for the same assemblage and total sample ef-

fort, different results will be produced depending on the

size of the sample units (Chiarucci et al. 2003).

A more balanced interpretation of values produced by

current methods is that they represent an estimate of the

minimum number of species in the community (Longino

et al. 2002). In this sense, estimates would be preferable

to observed richness as they would be less negative bi-

ased. A potential usefulness of such interpretation, yet to

be evaluated, is in comparisons of different assemblages

(Walther and Martin 2001). Stout and Vandermeer (1975)

showed that previous beliefs that temperate streams were

richer in insect species than their tropical counterparts

were due to insufficient sampling in the latter. Extrapolat-

ing a species accumulation curve with an asymptotic

function, they showed that tropical streams are in fact

richer than temperate streams. However, this becomes

clear only after a large sample has been collected. This is

because species rich assemblages generally comprise a

large number of species with patchy distribution and a

great number of rare species. Stout and Vandermeer

(1975) argue that methods for estimating the species pool

could potentially provide better comparative grounds, as

they would produce high values for assemblages with

high numbers of rare species. In this sense, despite the

strong dependency of non-parametric estimators on ob-

served species richness, it is likely that estimated richness

would provide a better comparative basis as they are less

negatively biased than the observed species richness. Fur-

ther studies addressing specifically this question are nec-

essary to confirm this speculation.

While this work is restricted to non-parametric esti-

mators, it is possible that other currently available estima-

tors of species richness in assemblages are also strongly

dependent on the observed richness. This speculation is

based on the similarity in behavior of non-parametric and

other estimators in recent evaluations (Melo and

Froehlich 2001a). If this speculation is found to be true in

future evaluations, the question remains on the feasibility

of estimating species richness in an area or assemblage

using small samples.
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